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Abstract—Symbolic regression (SR) is the process of discovering hidden relationships from data with mathematical expressions,
which is typically considered an effective way to reach interpretable machine learning. Genetic programming (GP) has been the
dominator in solving various SR problems. However, as the scale of SR problems increases, GP often poorly demonstrates and cannot
effectively address the real-world high-dimensional problems. This limitation is mainly caused by the stochastic evolutionary nature of
traditional GP in constructing the proper trees. In this paper, we propose a differentiable approach named DGP to construct GP trees
towards high-dimensional SR for the first time. Specifically, a new data structure called differentiable symbolic tree is proposed to relax
the discrete structure to be continuous, thus a gradient-based optimizer can be easily presented for the efficient optimization. In
addition, a sampling method is proposed to eliminate the discrepancy caused by the above relaxation for valid symbolic expressions.
Furthermore, a diversification mechanism is introduced to promote the optimizer escaping from local optima for globally optimal
expressions. With these designs, the proposed DGP method can efficiently search for the GP trees with higher performance, thus
being capable of dealing with high-dimensional SR. To demonstrate the effectiveness of DGP, we conducted various experiments
against the state of the arts based on both GP and deep neural networks. The experiment results reveal that DGP can outperform
these chosen peer competitors on real-world high-dimensional regression benchmarks with dimensions varying from hundreds to
thousands. In addition, on the challenging synthetic SR problems, the proposed DGP method can also achieve the best recovery rate
even with different noisy levels. It is believed this work can facilitate SR being a powerful alternative to interpretable machine learning
for a broader range of real-world problems.

Index Terms—Symbolic regression, genetic programming, gradient descent, interpretable machine learning, neural networks.
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1 INTRODUCTION

IN scientific research, a key task is to discover relationships
within experimental data and then formalize them into

symbolic expressions [1]. This process is widely performed
using symbolic regression (SR) [2], a fundamental machine
learning technique. Research into SR has been steadily ongo-
ing for decades [3], with research interest largely based on
the inherent interpretable nature of symbolic expressions.
The recent growth in interpretable artificial intelligence has
placed SR as a rapidly-emerging topic in recent years [4],
[5], [6], [7], [8].

In the literature, there are two mainstream approaches
to achieving SR: neural networks (NNs) [9] and genetic
programming (GP) [10]. The NN-based SR approaches can
be further classified into two different categories based on
whether the symbolic expressions are constructed directly
or indirectly. Symbolic expressions in the direct NN-based
approaches are generated from the NNs without any in-
termediate agent. These approaches first construct an NN
in the same way as in traditional regression tasks, and
replace the traditional activation functions with mathemat-
ical symbols. The constructed NN is trained with sparse
constraints [11] and then the mathematical symbols asso-
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ciated with significant weights are sequentially extracted
to create the symbolic expressions. The canonical work by
Martius et al. [12] constructed a fully-connected NN with
three symbols, i.e., =, sin(·), and cos(·). Sahoo et al. [13]
later extended this work adding the “÷” operator to allow
for application to a wider variety of problems. Kim et al. [14]
posited that a fully-connected NN cannot effectively address
sequential SR problems; they proposed using multiple NNs
to perform SR in kinematics, where each NN is trained on a
specific time slot. Other types of NNs have also been used:
Cranmer et al. [15] utilized a graph NN [16] to simulate
physical particle systems. They suppose that data in the
physical particle systems are often non-Euclidean, which
makes the graph NN an ideal model for such kinds of data.

In contrast, indirect NN-based SR approaches utilize in-
termediary agents to generate symbolic expressions. These
agents are often trees composed of mathematical symbols.
Such approaches view SR as a special structure-generation
task, using generative models based on NNs (such as re-
current NNs (RNNs) [17]) to progressively generate a tree
structure. After that, the trees are transformed into the
final symbolic expressions. The motivation for this approach
is that the generated expressions do not directly depend
on the structure of NNs: thus complex and efficient NNs
can be utilized for more challenging SR problems. There
are a few representative works in this category [6], [18],
[19], which differ in how they select different generative
models according to different goals, such as accuracy or
speed. For instance, Kusner et al. [18] proposed a special
variational encoder-decoder [20] structure with grammar
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rules to map the trees representing symbolic expressions
into a latent space and then generate valid expressions
from it. The encoder-decoder structure has been shown to
be effective and was also used in SymFormer [21], which
is based on the Transformer architecture [22]. Petersen et
al. [6] and Mundhenk et al. [19] formulated the SR problem
as a reinforcement learning problem and used an RNN to
generate expression trees over multiple iterations to search
for more accurate symbolic expressions.

Although the above NN-based SR approaches have
shown effectiveness in experiments, limitations remain.
Firstly, the performance of an NN highly depends on its
structure, which is often manually designed, requiring ex-
pertise in both NNs and in the domain of the problem
being solved [7]. However, such kind of knowledge is
often not held by users [23]. Secondly, due to the non-
convexity of NNs, these approaches easily get stuck in local
optima, resulting in poorly performing, inexact symbolic
expressions. This phenomenon has been reported in both
the direct and the indirect NN-based SR approaches in very
recent literature [24].

GP, an evolutionary learning method that automatically
constructs tree structures [10], has the advantages of not
requiring prior knowledge and also being robust to local
minima [25]. Thus, GP is naturally used for SR problems.
In canonical GP-based SR, symbolic expressions are rep-
resented as trees, where in each tree, the leaf nodes are
variables/features, and the non-leaf nodes are operators.
GP maintains a population of multiple trees (which have
different structures) and evolves the population generation-
to-generation by using genetic operators such as crossover
and mutation to change the structure as well as parameters.
A pre-defined fitness function is used to evaluate each
tree in the population. Based on their fitness, trees are
selected as parents by a selection operator for generating
individuals in the next generation. The evaluation and se-
lection operators guide the GP search towards the optimal
symbolic expression. In recent years, various GP methods
have been designed for SR problems [5], [8], [26], [27], [28].
Unfortunately, these methods are mainly designed for low-
dimensional problems and cannot effectively scale well to
high-dimensional problems1 that are prevalent in our big
data era [29].

While the flexible representation of GP makes it good
at evolving diverse forms of symbolic expressions, when
facing high-dimensional input variables, it tends to generate
overly complex models that overfit the training data [8]. To
address this problem, multiple works have been proposed.
One popular category of methods utilizes geometric seman-
tic GP (GSGP) [30] in SR to improve the generalization
performance [28], [31], [32]. GSGP makes use of semantic-
aware operators to enhance the variation process of GP
by considering intermediate solution outputs (i.e. partial
solutions within a tree), making the search process more
efficient. The method enables GP to find more accurate
expressions, but often at the cost of complexity [33]. Fur-
thermore, the expression size of GSGP-based SR varies

1. We note that there is no formal definition of “high dimensional” in
the literature. Based on recent work [4], [5], [6], [7], [8] and also our own
knowledge of challenging SR problems, we consider an SR problem to
be high-dimensional when its input has a dimensionality over 50.

from hundreds to millions of components [31] [28], which
makes it almost impossible for humans to understand these
expressions. Researchers have also explored combining GP
and feature engineering to improve the generalization per-
formance of GP on high-dimensional problems [34], [35].
For instance, Chen et al. [34] try to improve the gener-
alization performance of GP for high-dimensional SR by
using feature selection. They propose a new feature selection
method based on permutation and use it to select the truly
relevant features for GP-based SR. The new improvement
experimentally alleviates the generalization performance
degradation of GP on high-dimensional SR tasks. However,
the inefficiency of GP evolutionary search approach high-
dimensional problems, which causes the above problem
from the root, remains to be addressed.

Another issue is that the interpretability of GP solu-
tions suffers substantially on high-dimensional problems.
GP often leads to very large expressions or chaining of
nonlinear functions, which makes the expressions much
harder to analyze [36]. This problem is related to “bloat-
ing” in GP (where trees grow unnecessarily large without
a corresponding increase in fitness), which is a common
side effect of the evolutionary-based search approach in GP.
The flexible representation of GP means it can theoretically
discover the entire set of possible function forms. However,
this enormous search space includes redundant expressions;
the evolutionary process often generates unnecessarily large
models with poor interpretability [37]. Bloating is a com-
mon problem in GP-based SR and has been researched for
decades. Previous solutions to this problem include incorpo-
rating a parsimony measure to the fitness function [38], [39]
or utilising online program simplification [40]. For instance,
Kinzett et al. [40] explored the use of two online program
simplification approaches in the evolution process: algebraic
simplification [41] and numerical simplification. This helps
to reduce bloating in the evolution of GP. However, it
needs predefined parameters, i.e., simplification rules and
threshold. The final test performance is highly sensitive to
these parameters, and it is hard to preset them properly.
More recently, Franca et al. [39] introduced a new representa-
tion called interaction-transformation, which constrains the
search space in order to exclude a region of larger and more
complicated expressions. The approach has proven effective
in traditional small-scale SR problems, but it does not scale
well as problem dimensionality increases [37].

In summary, GP-based SR approaches have the potential
to be interpretable. However, the stochastic evolutionary-
based search makes finding the optimal structure inefficient,
resulting in performance degradation on high-dimensional
problems. In contrast, the NN-based SR approaches have
high search efficiency due to their gradient-based optimiza-
tion way - but the black-box nature of NNs makes it hard to
convert an NN into an interpretable expression. To combine
the benefits of both GP and NNs, we for the first time
propose differentiable GP (DGP), which is a gradient-
based algorithm to effectively construct GP trees on high-
dimensional SR problems. The main contributions of the
proposed DGP algorithm are listed as follows:

• We propose a representation, the differentiable sym-
bolic tree, in DGP that relaxes the discrete tree struc-
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ture into a continuous space. This design allows the
structure to be optimized using a gradient-based op-
timizer. As a result, DGP can more efficiently search
for symbolic expressions with higher performance on
high-dimensional problems.

• We propose a sampling method that can map
changes in continuous value to discrete structures,
allowing the creation of valid symbolic trees. Fur-
thermore, we introduce a diversification mechanism
that acts on the symbolic trees to produce more
diverse structures. This design improves the global
search ability of DGP, allowing the exploration of
symbolic expressions across the whole search space.

• We show that the proposed DGP method can out-
perform existing SR methods (based on both GP and
deep NNs) on various high-dimensional, real-world
SR benchmarks. Furthermore, we also demonstrate
that DGP can recover the exact symbolic expressions
on the synthetic datasets across different levels of
noise. We conclude that DGP is an effective tool for
challenging, real-world SR problems.

The remainder of this article is structured as follows.
First, background and related works are presented in Sec-
tion 2. Then, the proposed DGP method is described in
detail in Section 3. Next, the experiment design and experi-
ment results, as well as the analysis (including recovery and
robustness analyses), are given in Sections 4 and 5. Finally,
we conclude the paper and present our vision for future
work in Section 6.

2 BACKGROUND AND RELATED WORK

In this section, we introduce crucial background knowledge
in SR. We then review the relevant work that uses GP
with gradient descent to demonstrate the novelty of our
proposed DGP method.

2.1 Symbolic Regression (SR)
SR is a sub-field of machine learning concerned with discov-
ering an analytical model of the given data in the form of
a symbolic expression or mathematical formula. In general,
the training process of SR can be formalized as Equation (1):

f∗ = argminf

n∑
i=1

D(yi, f(Xi)) (1)

where Xi ∈ Rd and yi ∈ R are the input-output pairs with
continuous values in a dataset with size n. f(·) : Rd → R
represents a function in the form of a symbolic expression
and D(·, ·) is a distance function. The goal of SR is to find
a symbolic expression f∗ that minimize D(yi, f(Xi)) for
{(Xi, yi)|i = 1, 2, 3, · · · , n}. After training, the expression
f∗ can be used to analyze the underlying relationships
within the data and can also be used as a model to make
predictions on unseen data.

SR has two significant differences from other regres-
sion techniques. Firstly, compared to statistical regression
techniques, which only perform parameter optimization
on a pre-defined fixed model structure, SR can adaptively
discover a suitable model structure with appropriate pa-
rameters. For example, linear regression assumes a linear

relationship between the input variables and the output by
using linear equations, where the linear coefficients need
to be optimized. However, SR does not pre-determine the
structure of the expression, and the expressions obtained
can be linear, polynomial, or of other shapes. This means
that SR is a mixed optimization process, where the optimal
structure and the parameters are searched at the same time.
This advantage allows SR to have broader applications than
statistical regression techniques, especially in the face of un-
known problems, where domain experience is often lacking,
as would be needed to pre-design a model structure.

Secondly, other numerical regression methods, such as
NNs, are generally treated as black-box models and only
judged by their prediction accuracy on unseen data. SR,
while producing accurate results, is also particularly well
suited for human interpretability and in-depth analysis,
as the expressions identify the true underlying functional
relationship behind the data. For instance, given a dataset
consisting of x ∈ R and y ∈ R, if we use an NN for
regression, we only get a black-box NN model for prediction
after training. Instead, if we use SR to process it, we can
obtain a symbolic expression, such as y = −9.8 × sin(x).
We can not only make predictions but also reflect that x and
y might be the angle and angular velocity taken from the
same pendulum system, based on which performing further
analysis. Given such advantages, SR is considered to be an
effective way to enable interpretable machine learning [42].

2.2 Genetic Programming (GP) with Gradient Descent

GP is famous for its ability to automatically generate Lisp-
style computer programs and was initially popularised by
Koza [10]. GP can easily represent computer programs us-
ing hierarchical syntax trees, which means GP is suitable
for automatic programming. With such tree structures, the
size, shape, and contents of the program can be changed
dynamically by genetic operators of GP. In SR, the symbolic
solutions are similar to automatic programming, so GP
was naturally extended to SR and gradually became the
dominant technique among various SR techniques [43].

The idea of combining GP with gradient descent search
to enhance GP for SR has been researched before. The
initial works in this area were FGP [44] and WLGP [45].
FGP utilized a gradient descent search to optimize the
numeric leaf values for GP and found that the gradient
search can provide improvements in accuracy as a form of
local search. In WLGP, inclusion factors are introduced to
different subtrees of GP and the gradient descent search
is utilized to optimize them, which collectively increases
the overall performance. The gradient descent approach in
both FGP and WLGP was applied to every program in
the population, which negatively impacts the efficiency of
the search process [46]–performing gradient descent search
for all the programs in the population comes at additional
computation cost. Later, Chen et al. [47] focused on balanc-
ing accuracy and efficiency by applying gradient descent
to only the top 20% programs in the population. In recent
work, Dick et al. [48] found that feature standardization can
improve the efficiency of gradient descent: they proposed a
hybrid method that combined feature standardization and
stochastic gradient descent.
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In summary, these existing methods only use gradient
descent search as a complement to evolutionary methods
for local search. However, in practice, the gradient descent
approach has already been proved to be effective in both
parameter and structure optimization in the filed of NN,
therefore it is also worth exploring to utilize this efficient
approach to optimize the structure of GP. Unfortunately, the
gradient descent approach has never been used to dominate
the optimization of the GP structure. This is because the
optimization of GP structure is a fundamentally discrete
problem. The first contribution of this study is just to ad-
dress this critical issue.

3 THE PROPOSED METHOD

In this section, we describe the proposed DGP method
in detail. First, we present the overall framework of DGP
in Subsection 3.1. Then, we detail the optimization and
diversification process, which are the key steps in DGP, in
Subsections 3.2 and 3.3, respectively.

3.1 Overall Framework

The overall framework of DGP is described in Algorithm 1.
By giving the pre-defined number of iterations G and the
training dataset D, DGP first initializes the expressions
(line 1), and then performs a series of iterations (lines 2-9).
Finally, the best searched expression regardingD is obtained
(line 10).

Algorithm 1: The Overall Framework of DGP
Input: The maximal iterations G, the dataset D
Output: The optimal expression

1 τ0 ← Initialize expressions
2 for t = 1, ..., G do
3 τ ← ∅
4 for e in τt−1 do
5 τ ← τ∪ Optimization(e, D)
6 end
7 Diversification(τ , D)
8 τt ← τ
9 end

10 Return the best solution in τt

In the initialization process, an expression set τ0, consist-
ing of mathematical expressions, is initialized. Please note
that there is no specific prior knowledge introduced to this
initialization – τ0 contains only the most basic mathematical
expressions used by other GP tasks, such as x, x + y, etc.
During each iteration t, an empty set τ is created to store
the expressions found in that iteration (line 3). After that, the
process of Optimization, i.e., the gradient-based optimization
designed in DGP, is performed on D for each mathematical
expression e in τt−1, and then the optimized e is added to τ
(lines 4-6). Next, the process of Diversification is performed
on the optimized expression set τ (line 7).

As shown above, the search process of DGP consists of
two important parts: Optimization and Diversification, which
are described in the following subsections.

3.2 Optimization

The optimization phase is proposed to search for the best
structure in a subspace efficiently. The overall process of
optimization can be divided into three steps. They are:
Symbolic Tree Construction, Continuous Relaxation, and
the Gradient-Based Optimizer, which corresponds to Step
1© to 3© in Fig. 1. In Step 1©, the mathematical expression

is represented by the symbolic tree. In Step 2©, the symbolic
tree is relaxed into a continuous model called a differen-
tiable symbolic tree (DST). In Step 3©, the DST is optimized
with gradients iteratively, and the optimized DST is finally
obtained.

Mathematical
Expression

 𝑥 + sin (𝑥)

Symbolic Tree

 +

 𝑥  𝑠𝑖𝑛

  𝑥

Step①

Symbolic Tree 
Construction

Differentiable 
Symbolic Tree

DST

Continuous 
Relaxation

Step ②

Optimized 
DST

Gradient-based
Optimizer

Step ③

Dataset

Fig. 1. Illustration of the optimization process. The optimization process
can be divided into three steps. Step 1: Given an expression, a symbolic
tree is constructed to represent it. Step 2: The symbolic tree is relaxed
to a continuous model called differentiable symbolic tree (DST). Step 3:
The DST is evaluated on the training dataset to compute loss and then
optimized by gradient descent.

Among the three steps, the first step follows the same
process as other GP-based SR approaches. The function set
used is {+, −, ×, ÷, sin, cos, exp, log} and the terminal set
is the input variables in the datasets, which together make
up the primitive set. In the following subsections, we will
focus on the last two steps.

3.2.1 Continuous Relaxation

In traditional GP-based SR, the search space of model struc-
tures is discrete. Specifically, a primitive in one node of a
symbolic tree can randomly change to another through ge-
netic operators of mutation and crossover in the evolution-
ary process. In DGP, we propose optimizing the structure of
the symbolic trees by leveraging the gradient information,
which requires a continuous search space. Therefore, contin-
uous relaxation is proposed to construct a continuous sub-
space from a given tree structure. We achieve this through
the use of a node matrix and adjacency matrix, which will
be introduced below.

Node Matrix: assuming that the total number of nodes
in the tree is K , the node matrix is composed of K vectors.
The dimension of each vector is L, which is the length of
the primitive set. The values in the vector are floats that
represent the proportion of the operation or variable in the
node, which can also be viewed as the probability of the
node taking a certain operation or variable. As a result, the
node matrix can be formulated by Definition 1.

Definition 1. Node matrix N is a K ×L matrix that satisfies
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 0

 1  2

 3

leaf
2-arity
1-arity

Node Matrix (4×9)Symbolic Tree Node Vectors (K=4)

Node 0
Node 1

Node 2
Node 3

Primitive Set (L=9)

𝑤, 𝑤,ଵ 𝑤,ଶ 𝑤,ଷ 𝑤,ସ

𝑤ଵ, 𝑤ଵ,ଵ 𝑤ଵ,ଶ 𝑤ଵ,ଷ 𝑤ଵ,ସ

𝑤,ହ 𝑤, 𝑤, 𝑤,଼

𝑤ଵ,ହ 𝑤ଵ, 𝑤ଵ, 𝑤ଵ,଼
𝑤ଶ, 𝑤ଶ,ଵ 𝑤ଶ,ଶ 𝑤ଶ,ଷ 𝑤ଶ,ସ

𝑤ଷ, 𝑤ଷ,ଵ 𝑤ଷ,ଶ 𝑤ଷ,ଷ 𝑤ଷ,ସ

𝑤ଶ,ହ 𝑤ଶ, 𝑤ଶ, 𝑤ଶ,଼

𝑤ଷ,ହ 𝑤ଷ, 𝑤ଷ, 𝑤ଷ,଼

+          - × ÷ sin        cos       exp        log        x
 𝑤,

଼

ୀ
= 1

 𝑤ଵ,

଼

ୀ
= 1

 𝑤ଶ,

଼

ୀ
= 1

 𝑤ଷ,

଼

ୀ
= 1

Fig. 2. Illustration of the generation of node matrix. For each node in the symbolic tree, a vector having a length equal to the size of the primitive set
is initialized with zeros, and then the element is set to one if it is contained by the primitive set. These vectors together form the node matrix. During
the GP structure optimization, the values of the elements in the node matrix are changed with the constraint that the sum of each vector is equal to
one.

Equation (2):

N =

(
Nnonleaf

Nleaf

)
∈ RK×L

+

=

 w0,0 ... w0,L−1
... wi,j ...

wK−1,0 ... wK−1,L−1


s.t.

L−1∑
j=0

wi,j = 1, i = 0, ...,K − 1.

(2)

where Nnonleaf ∈ Rn×L
+ and Nleaf ∈ Rm×L

+ are for
non-leaf nodes and leaf nodes of the symbolic tree, re-
spectively. n and m are the numbers of non-leaf nodes
and leaf nodes in the tree. Let ŵij be the original value
in N . A softmax activation is applied to derive wij , i.e.,
wij = exp(ŵij)/

∑L
j′=1 exp( ˆwi,j′ ), to implicitly encode the

constraint
∑L

j=1 wij = 1. This constraint guarantee each
row of N is a valid primitives’ distribution. ŵ and the
corresponding w are set to be learnable, which guarantees
that the proportion of different primitives in each node in
the tree can be changed by training. An example of the
generation of N is illustrated in Fig. 2. As is shown in
the figure, the symbolic tree has 4 nodes, numbered 0 to 3.
Each node can be represented by a vector comprising all the
primitives. Vectors 0 to 3 are used to represent nodes 0 to 3
correspondingly. In the example, the length of the primitive
set is 9, so each vector contains 9 weights representing the
proportion of each primitive, giving a 4×9 node matrix.

 0

 1  2

 3
Adjacency Matrix

      
  

       

0 0
𝑎ଵ, 0

0 0
0 0

𝑎ଶ, 0

0 0

0 0
𝑎ଷ,ଶ 0

 0

 1

 2

 3

 0  1  2  3

Symbolic Tree

 1  0

 2  0

 3  2

Fig. 3. Illustration of the adjacency matrix. ai,j represents that node i is
the child of node j, and 0 means that there is no connection between
the two nodes.

Adjacency Matrix: given the total number of nodes in
the tree is K , the adjacency matrix is of shape K × K .

Each row and column in the matrix represent the adjacency
information of a node. Specifically, each row in the matrix
represents which nodes that the node points to, i.e., the par-
ent node of it, and each column represents the child nodes
of the current node. The values in the adjacency matrix
indicate the strength of the connection between the nodes,
which will be used when a node is deleted or replaced in
the sampling step. Formally, the adjacency matrix is defined
by the Definition 2.
Definition 2. Adjacency matrix A is a K × K matrix that

satisfies Equation (3):
A ∈ RK×K =

 a11 ... a1K
... aij ...
aK1 ... aKK

 ,
where aij =

{
σ (vij) , connected

0 , disconnected

(3)

where v ∈ RK are the parameters, and the sigmoid function
σ (·) imposes the constraint 0 ≤ aij ≤ 1. For connected
nodes i and j, aij = σ(vij) measures the strength of the
connection. The illustration of the generation process of A is
given in Fig. 3. As is shown in the figure, the symbolic tree
has 4 nodes, numbered 0 to 3, thus its adjacency matrix is
4 × 4. The values in the matrix are initialized according to
the connections in the tree. Specifically, there are 3 directed
edges in the tree. They are node 1→node 0, node 2→node
0, and node 3→node 2. So there are 3 values greater than
0 in the matrix, which are a1,0, a2,0, and a3,2, respectively.
The rest of the values are 0, which means that there is no
connection between the corresponding nodes.

Given the node matrix N and the adjacency matrix A,
we can show how the fixed node in the original symbolic
tree is relaxed to a continuous representation. Overall, there
are two kinds of nodes (2-arity and 1-arity) in the symbolic
tree, corresponding to two different situations:

1) For a 2-arity node: with the proposed N and A, a
2-arity node is transformed to a mixing node of all the
operations. Specifically, the mixing node takes the outputs
of two child nodes as inputs. For binary operations, such as
+,−, the node calculates the results of each binary operation
with the two inputs and then weights the results using the
corresponding weights in N . For unary operations, such as
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𝑤,଼ × 𝑝𝑎𝑠𝑠(𝑎ଵ, × )input1

 0

 1  2

 3

input2

output output =

input1

input2 = 𝑤ଶ, ×(𝑥 + 𝑥)+…+𝑤ଶ, × log (𝑥)+𝑤ଶ,଼ × 𝑝𝑎𝑠𝑠(𝑥)

Symbolic Tree

9 operations +,-,×,÷,sin,cos,exp,log,pass

…++𝑤, × (        + )input2input1 𝑤, × log(𝑎ଵ, × )input1  +

𝑥

Fig. 4. An example to explain how the fixed node in the symbolic tree is relaxed to a continuous representation.

sin, exp, they only need one input. Therefore, the child node
with the greater adjacency weight in A would be chosen
and the output of it is taken as the input. The results of
each unary operation are calculated with the input and then
weighted with the corresponding weights in N . Finally, the
sum of all the results is returned as the output of this node.

2) For a 1-arity node: a 1-arity node is also transformed
to a mixing node of all the operations. Specifically, a 1-arity
node takes the only child node as the original input. For
unary operations, the node calculates the results of each
unary operation with the original input and returns the
weighted sum. For binary operations, a leaf node would
be added as the second input for the node, and the re-
sults of each binary operation are calculated using the two
inputs. Through the above approach, nodes in the tree
are transformed into mixing nodes, allowing continuous
representation of the symbolic tree to be obtained.

As previously discussed, bloating is a common problem
in GP-based SR, which also occurs in the proposed method.
In order to alleviate this issue, a new unary operation
called pass is introduced, to indicate that the input of a
node is returned directly as the result. The effect of pass is
taken in conjunction with the Diversification part designed
in the proposed method, and the details are justified in
Subsection 3.3.

For a better of understanding the above design, we
provide an example in Fig. 4 to explain how the nodes 0 and
2 are transformed into mixing nodes. Based on the design
of pass and also the 8 operations defined above, there are
a total of 9 operations mixed in the nodes. In the following,
we take the operations + and pass as the representatives
of binary operations and unary operations, respectively, for
the explanations. Specifically, the node 0 is a 2-arity node
that takes the outputs of two child nodes as inputs, as
marked by input1 and input2. For the binary operation
+, the corresponding weight is w0,0 in N . Therefore, we
calculate the result of + with input1 and input2, and weigh
the result with w0,0. For the unary operation pass, the
corresponding weight is w0,8 and it only needs one input.
Assuming the adjacency weight of input1 a1,0 is greater
than that of input2, we calculate the result of pass with
the product of a1,0 and input1, and weigh the result with
w0,8. Furthermore, the node 2 is a 1-arity node, and it takes
the output of the leaf node 3 marked by x as input. For
the binary operation +, the corresponding weight is w2,0

and it needs two inputs. Therefore, we add a leaf node as
the second input, and calculate the result of + with the
two inputs and weigh the result with w2,0. For the unary

operation pass, it calculates the result of pass with the input
x and weights it with w2,8, which is the weight for pass in
N . Through the above process, the node 0 and node 2 are
transformed into the mixing nodes.

Lastly, in order to take advantage of the previously
learned information, N and A are initialized according to
the original symbolic tree rather than through a random
process. Taking the symbolic tree in Fig. 1 as an example,
the primitive at the root node of the symbolic tree is +, and
so the weight of + is initialized to 1, with others set to 0 in
the node vector of the root node when constructing N .

The symbolic tree, the node matrix N , and the adjacency
matrix A together form the model called the differentiable
symbolic tree (DST). Through the proposed DST, the struc-
ture of a symbolic tree is represented by the corresponding
real-valued matrices N and A, which can then be optimized
using gradient-based optimization.

3.2.2 Gradient-based Optimizer
After mapping the symbolic tree into a continuous space, a
gradient-based approach can be easily used to optimize the
structure. We approximate the search of the symbolic tree
structure as a differentiable problem shown in Equation (4):

F ∗ = arg minF∈QL(F (X), y)
F is determined by N,A−−−−−−−−−−−−−−−−→

N∗, A∗ = arg minN,AL(FN,A(X), y)

(4)

where F represents the mathematical expressions in Q, and
Q is the whole search space defined by the terminal and
function sets. X ∈ R|t| and y ∈ R represents the data points
in the training dataset. L is the predefined loss function,
which measures the closeness of F (X) to the target y. The
first line in Equation (4) is for the discrete space, where
a genetic beam search is used to optimize F towards the
optimal expression F ∗ based on the training dataset. After
mapping the mathematical expression to the DST, F is
determined by two data structures: N and A (the second
line in Equation (4)). Thus, the problem transforms to one of
making the output of the DST model close to y by adjusting
N and A. Hence, the DST can be optimized in a continuous
domain using a gradient-based optimization approach. This
optimization approach consists of three parts: forward prop-
agation, loss function, and gradient descent optimization.

Forward propagation: As in a symbolic tree, the DST
takes the input variables in the dataset as input and returns
the computed result of the root node as output. The for-
ward propagation process of DST consists of two parts: the
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mixing computation within nodes and the propagation of
information between nodes.

For the mixing computation within nodes, let O be a
set of candidate operations of the node, Oj(·) be the j-th
operation to be applied to the input of the node x(i), wi,j be
the weight of the i-th row and j-th column in N , and L be
the length of O. In forward propagation process, the output
of the i-th node Ō(x(i)) is a weighted sum over all possible
operations, as shown in Equation (5).

Ō(x(i)) =
L−1∑
j=0

wi,jOj(x
(i)) (5)

Through this equation, the output of a node in the DST is
computed and then provided to the next node as an input.

Algorithm 2: The Forward Propagation Process of
DST

Input: The input data X , the node matrix N , the
adjacency matrix A, the origin tree T , the
operation set Op

Output: The output of DST ypred
1 nnode ← Compute the number of nodes in T
2 r ← Store the calculation results of all the nodes
3 for id in reverse(nnode) do
4 n← Get the node in T according to id
5 w ← Get the node weight in N according to id
6 if n is leaf node then
7 r[id]← Compute the results of n with w, Op

and X according to Equation (5)
8 end
9 else

10 a← Get the adjacency weight in A according
to id

11 idchild ← Obtain the childs of the node
according to a

12 X(id) ← Compute the inputs according to a
and r[idchild]

13 r[id]← Compute the results of n with w, Op,
X(id) according to Equation (5)

14 end
15 end
16 ypred ← r[0]
17 Return ypred

Our proposed approach uses the adjacency matrix to
define the propagation of information between nodes, as
described formally in Algorithm 2. A bottom-up execution
process is used, with an array (r) storing the computation
results of previous nodes (lines 1&2). Starting from the
leaf nodes, for each node in the DST, we first obtain the
node’s weight from N (lines 3-5), and then compute its
output based on the type of the node. For a leaf node, its
inputs are directly read from the training dataset, with its
output computed based on Equation 5 (lines 6&7). For a 2-
arity node, the two child nodes, as well as their adjacency
weights, are found from A (lines 10&11). The weighted
outputs of the two child nodes are fed as inputs to the
current node for its calculation (lines 12&13). The process
for a 1-arity node is similar, but only one adjacency weight

and the corresponding node are selected. After finishing the
computation for all the nodes in the DST, the result of the
root node is returned as the output of the DST (lines 16&17).

Loss function: In GP-based SR, a standard fitness mea-
sure is the normalized root-mean-square error (NRMSE) [49]
(where the standard RMSE is normalized by the standard
deviation of the target values y). That is, given a dataset
consisting of n groups of (X, y) pairs, NRMSE is computed
as Equation (6):

NRMSE =
1

σ

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

where ŷ = f(X) are the predicted values computed using
the candidate expression f , and σ is the standard devi-
ation of the target values y. Normalization by σ makes
the measure consistent across different datasets which have
different domains. We use this standard measure as our loss
function.

Given that we are performing SR, our DGP method
needs to reacquire the discrete structure from the continuous
encoding. However, there are possible issues when discretiz-
ing the continuous encodings. The weight vector of certain
nodes may not clearly specify a single operation. For exam-
ple, if the weight vector of a node is [0.312, 0.135, ..., 0.315],
it is hard to justify that an operation weighted by 0.315
is significantly better than the other weighted by 0.312.
To address this, an extra loss is explicitly incorporated to
push values in the node matrix towards 0 or 1 (as per [50]),
formally as Equation (7):

Loss0−1 = − 1

L

L∑
j=1

(wj − 0.5)2 (7)

where L is the number of operations mixed in a node, and
w is the softmax value of the weight of different operations.
In order to control the strength of Loss0−1, the loss is
weighted by a coefficient λ0−1. Thus, the final loss function
is formulated as Equation (8):

Loss = NRMSE + λ0−1Loss0−1 (8)

Gradient descent optimization: The gradient descent
process for optimizing N and A is described in Algorithm 3.
In each epoch, a batch of data is first obtained from the
training dataset in the form (X, y) (line 2). The input data
X is fed into the DST model, and the forward propagation
results of DST are obtained as the predicted values ypred
(line 3). The loss between y and ypred is then computed
according to Equation (8) (line 4). After that, the gradients
of the learnable parameters in the N and A are computed
by back-propagation based on the loss (line 5). It should
be noted that since the operations mixed in the nodes are
involved in the computation of the forward propagation
results, the gradients of the intermediate mixing nodes are
also computed in the process of back-propagation. These
gradients are then applied to the N and A to fine-tune
the learnable parameters (lines 6&7). The above process
is performed over multiple epochs to reduce the loss iter-
atively. Finally, the optimized matrices from the DST are
returned(lines 9&10).
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Algorithm 3: Gradient Descent Optimization for
the DST

Input: The DST model M , the dataset D, the
maximal epochs E, the loss function L, the
batch size n, the learning rate α and β

Output: The optimized parameter matrices Nopt and
Aopt

1 for epoch = 1, ..., E do
2 (Xi, yi)

n
i=1 ←Get a batch of data (input-output

pairs) from D
3 ypred ←M(X)
4 loss← L(y, ypred)
5 gradN , gradA ←Compute the gradients of N

and A by back-propagation of loss
6 N← N + αgradN
7 A← A + βgradA
8 end
9 Nopt, Aopt ← Get the optimized parameter matrices

from the trained model M
10 Return Nopt, Aopt

The above three parts (forward propagation, the loss
function and gradient descent optimization) together form
the gradient-based optimizer. In each iteration, the expres-
sions from the previous iteration are first transformed into
symbolic trees and then relaxed to generate DSTs. Each
DST is fed into the optimizer and is iteratively trained on
the dataset until convergence. Then, the optimized DSTs go
through a Diversification process, as introduced in the next
subsection.

3.3 Diversification

The Diversification phase is proposed to drive the search
into diverse subspaces. The goal is achieved by first sam-
pling symbolic trees from the optimized DST, and then
applying a diversifier to generate new symbolic trees as
the starting point of the next Optimization phase. In the
following, these two steps are introduced in detail.

First, new symbolic trees are sampled from the op-
timized DST. The sampling step also uses a bottom-up
approach. Starting from the leaf node, for each node in
the DST, one of the primitives is selected with probability
based on the optimized N . We develop three operations:
SHIRINK, REPLACE, and EXPAND for the sampling step.
Depending on the change of the primitive in the node, one
of the three operations is chosen to perform on the node.
The SHRINK operation is carried out if the arity of the node
decreases; the REPLACE operation is carried out if the arity
is not changed; and the EXPAND operation is carried out if
the arity increases. These operations are as follows.

• SHRINK: deleting the node. If the node is unary, the
child node will now directly connect to the parent
node. Otherwise, the child node with the greater
adjacency weight will be chosen to connect to the
parent node.

• REPLACE: replacing the node with a new function
or terminal node, but not changing the number of
arity in the node.

• EXPAND: changing the type of the node, e.g., a leaf
node to a 1-arity node or a 1-arity node to a 2-arity
node, and connecting new children nodes to it.

 𝑠𝑖𝑛

(a) The SHRINK operation

 𝑠𝑖𝑛  cos

(b) The REPLACE opera-
tion

 × ×

𝑙𝑜𝑔

(c) The EXPAND operation

Fig. 5. Examples of the SHRINK, REPLACE, and EXPAND operations.
The node(s) targeted by the corresponding operation has been sur-
rounded with red dash rectangle for the purpose of illustration.

Please note that the REPLACE operation is similar to
the EXPAND operation, where each node can be changed
by another node, no matter whether the node is a terminal
or a function. They differ in that the REPLACE operation
requires the number of arity unchanged, while the EXPAND
operation does not. Fig. 5 illustrates the examples of these
three operations. In particular, in Fig. 5 (a), the sin node
is shrunk, and its child node is directly connected to its
parent node; in Fig. 5 (b), the function sin in the root node
is replaced by a new function cos; in Fig. 5 (c), the left child
of the root node is expanded. The primitive in it is changed
from x to log, and a leaf node is added to connect with it.

It has been highlighted that the design of pass can
alleviate the bloating issue faced by existing GP methods.
In the proposed method, if pass accounts for the maximum
weight in a node, the node would be removed to shrink
the symbolic tree, reducing the presence of bloating. This is
because the introduction of pass gives a way to reduce the
depth of the symbolic tree. Through the pass operation, the
redundant nodes in the symbolic tree can be removed and
the bloating can be effectively controlled.

By performing the above three operations, we are able
to sample well-behaved symbolic trees from the subspace
of the symbolic tree. However, the sampled symbolic trees
are only the local optimal solutions in the current subspace,
and a mechanism is needed to guide the search towards
potentially better subspaces. Inspired by recent work [19],
we designed a diversifier to tackle the problem. The diversi-
fier applies common genetic operators including crossover
and mutation to the sampled symbolic trees to generate
more diverse structures. The use of evolutionary operations
generates individuals that may fall well outside the local
region of the search space and can effectively avoid the
search process falling into a local optimum.
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Finally, the new symbolic trees are evaluated on the
training dataset, and their accuracy is computed. If their
accuracy reaches a pre-defined threshold, we consider that
we have found the correct mathematical expression, and
the search is ended. Otherwise, the next iteration of opti-
mization and diversification restarts based on the current
symbolic trees. The above process continues until the max-
imum number of generations is reached, and then the best
expression found is returned as the final result.

4 EXPERIMENT DESIGN

In this section, the experiment settings of the proposed
method as well as other baseline methods are given. The
benchmark datasets are detailed in Subsection 4.1. The GP-
based and NN-based SR recently-proposed baselines are
introduced in Subsection 4.2. The evaluation metrics and
parameter settings are shown in Subsection 4.3.

4.1 Benchmark Datasets

To verify if the proposed DGP method can effectively and
efficiently solve high-dimensional SR problems, we chose
eight real-world datasets (listed in Table 1) that are com-
monly used in the SR community [8], [37], [51]. The first
seven datasets are taken from the Penn Machine Learning
Benchmarks (PMLB) [52], which is a large collection of
curated benchmark datasets for evaluating and compar-
ing supervised machine learning algorithms. These are the
regression benchmarks with the highest number of fea-
tures in PMLB, ranging from tens to hundreds of features,
which is challenging for both GP-based and NN-based SR
methods. In order to investigate the effect of the proposed
DGP on even higher-dimensional problems, we added the
last benchmark (DLBCL) to the experiments. The DLBCL
dataset is a diffuse large B-cell lymphomas dataset with
over 7, 000 features, which is hundreds of times more than
commonly-used regression datasets. Each dataset is divided
into training and test sets at a ratio of 75% to 25%.

TABLE 1
Real-world Benchmarks

Name #Features #Total #Training #Test

Satellite image 36 6,435 4,826 1,609
Fri c4 50 50 1,000 750 250
Fri c0 50 50 250 187 63
Fri c1 50 50 500 375 125
Fri c4 100 100 1,000 750 250
GeoOriMusic 117 1,059 794 265
Tecator 124 240 180 60
DLBCL 7,400 240 180 60

Another common practice in the SR community is to
verify if the exact regression equations can be found by SR
methods. To this end, we evaluate DGP and its competi-
tors on six synthetic SR benchmarks, which are commonly
used in previous research [6], [7], [19]. This is because the
ground truth expressions of the synthetic benchmarks are
pre-defined. The details of the six benchmarks are listed
in Table 2. The data points for training and testing are
uniformly sampled 20 times, as in previous papers [6], [19].

TABLE 2
Synthetic Benchmarks

Truth Expression Denoted Input Range

sin(x2)cos(x)− 1 S1 (−1, 1)
log(x+ 1) + log(x2 + 1) S2 (0, 2)

x3 + x2 + x+ sin(x) + sin(x2) S3 (−1, 1)
sin(x) + sin(y2) S4 (0, 1)
x4

x+y
S5 (−1, 1)

4× sin(x)cos(y) S6 (0, 1)

4.2 Peer Competitors

We chose recently proposed SR methods with good perfor-
mance as our baseline methods. Both GP-based and NN-
based methods are included:

• Genetic Programming (GP): the standard GP-based
symbolic regression implemented by the evolution-
ary computation framework DEAP [53].

• Rademacher Complexity for Enhancing the Gener-
alization of Genetic Programming for Symbolic Re-
gression [8] (MGPRC): A recently proposed mul-
tiobjective GP-based symbolic regression method
equipped with a novel complexity measure based
on the Rademacher complexity. The complexity of
an evolved model is measured by the maximum
correlation between the model and the Rademacher
variables on the selected training instances. By min-
imizing the training error and the Rademacher com-
plexity of the models as the two objectives, MGPRC
has shown to be superior to the standard GP on
generalization performance.

• Multi-Objective Genetic Programming Using NSGA-
II for Symbolic Regression [5] (NSGP): A new model
of interpretability is built and incorporated into the
GP algorithm. Through the approach, NSGP can
achieve a better accuracy-interpretability trade-off. In
addition, the penalization of duplicates [54] is added
to the method to preserve diversity better and find
more accurate models.

• Deep Symbolic Regression [6] (DSR): a recently pro-
posed deep learning method for symbolic regression
based on RNN generating symbolic trees and a mod-
ified reinforcement learning approach named risk-
seeking policy gradient is utilized to optimize the
RNN.

• Symbolic Regression via Neural-Guided Genetic Pro-
gramming Population Seeding [19] (PSSR): a hybrid
RNN and GP approach to symbolic regression. A
neural-guided component is used to seed the starting
population of a random restart genetic programming
component, gradually learning better starting popu-
lations.

4.3 Evaluation Metrics and Parameter Settings

In order to reasonably compare the performance of different
methods on real-world and synthetic benchmarks, different
evaluation metrics are used. For real-world benchmarks, we
follow the commonly evaluation metric [51] and compare
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the coefficient of determination R2 between y and ŷ, ex-
cluding NaNs and ±∞. The R2 result is define as Equation
(9):

R2 = 1−
∑N

i (yi − ŷi)2∑N
i (yi − ȳi)2

(9)

The introduction of the metric removes the interference of
very few outliers in the evaluation results and reflects more
effectively the merits of the searched symbolic expressions.
For the synthetic benchmarks with exact expressions, we
further compared the recovery rates [6] between the differ-
ent methods. Recovery rate is defined as the number of runs
that successfully recovered the expression from the data
as a percentage of the total number of runs. The metric
can effectively eliminate the uncertainty of performance
evaluation brought by randomness.

In the experiments, each method is trained on each
dataset across 30 repeated trials with a different random
state that controls the seed of the method. The parameter
settings of the experiments are in Table 3. Different parame-
ters are used in the experiments for NN-based and GP-based
SR methods. Given that it is difficult to establish an exact
correspondence between GP-based and NN-based methods,
e.g., how many training epochs in NN-based methods cor-
respond to one evolution generation in GP, we follow the
settings in [51] and uniformly set the termination criteria as
the number of evaluations performed. We set the maximum
number of evaluations to 100k for real-world benchmarks
and 500k for synthetic benchmarks.

5 RESULTS AND DISCUSSION

The experiments in this section are divided into two groups:
real-world and synthetic benchmarks. On the real-world
benchmarks, we measure training and generalization per-
formance [8], [32], [37]. On the synthetic benchmarks, fol-
lowing previous research [6], [19], we perform experiments
to determine the recovery rate and the effect of noise. As
discussed in Section 1, existing GP methods suffer from the
problem of bloat on SR problems, resulting in very large
and un-interpretable expressions. To compare the ability of
the proposed method to address this issue, we also perform
program size analysis of the final expressions across differ-
ent methods in both real-world and synthetic experiments.

5.1 Results on the Real-world Benchmarks
The averages and standard deviations of the test R2 scores
on the real-world datasets are presented in Table 4. The
distribution of R2 scores on the training datasets and test
datasets are shown in Fig. 6. In the figure, each method has
two boxes on each dataset. Blue and orange boxes are for the
training dataset and the test dataset, respectively. Results of
the statistical significance tests of R2 scores between DGP
and other baseline methods are presented in Table 5. In the
table, “−” indicates DGP performs significantly better than
the compared method, “+” indicates DGP is significantly
worse, and “=” means there is no significant difference.
We discuss the training performance and the generalization
performance in Subsections 5.1.1 and 5.1.2. The program
size of the final expressions is compared and analyzed in
Subsection 5.1.3.

TABLE 3
Hyperparameter settings for the experiments.

Hyperparameter Value

Common parameters
Function set +, −, ×, ÷, sin, cos, exp, log
Termination criteria 100k evaluations†

Number of repeated trials 30†

Parameters of the proposed DGP
Optimizer Adam
Learning rate 0.005
Loss function NRMSE + 0.1Loss0−1

Population size 500†

Epochs per iteration 1,000
Crossover & mutation rates 0.5&0.5
Generations per iteration 20

Parameters of NN-based methods
Optimizer Adam
RNN cell type LSTM
RNN cell layers 1
RNN cell size 32
Training method RSPG
Learning rate 0.0025
Entropy weight 0.005
Minimum expression length 4
Maximum expression length 30
Reward/fitness function NRMSE

Parameters of GP-based methods
Population size 500†

Initialization method Ramped half-and-half
Crossover operator One point
Crossover probability 0.5
Mutation operator Uniform
Mutation probability 0.5
Selection operator Tournament
Tournament size 3
Mutate tree maximum 2
Mutate tree minimum 0
† The termination criteria, the number of repeated trials, and the
population size for synthetic experiments are 500k, 10, and 1,000,
respectively.

5.1.1 Training Performance
The blue box plots in Fig. 6 show the training performance
of the expressions found by the different methods. Over-
all, the training performance of the GP-based methods is
better than that of NN-based methods. This is partly due
to the global search capability of GP, which enables it to
find reasonable solutions quickly in a large search space.
However, the NN-based methods, including DSR and PSSR,
have better stability, as reflected by the tighter distribution
of their R2 results on most of the datasets. These results
indicate that GP-based methods are more susceptible to
stochasticity, meaning they may need to be run several times
in practice to get the best results.

As shown in Table 5, the proposed DGP method has
better training performance in most cases on the training
datasets than its competitors. Specifically, the R2 scores of
DGP is significantly higher than that of GP on six of the
eight datasets (and not significantly different on the remain-
ing two). This indicates that the proposed new gradient-
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TABLE 4
Test R2 score of DGP and other methods on the eight real-world benchmarks over 30 independent runs

Datasets Satellite image Fri c4 50 Fri c0 50 Fri c1 50 Fri c4 100 GeoOriMusic Tecator DLBCL
Num of Features(Dimensions) 36 50 50 50 100 117 124 7,400

GP (Fortin et al.,2012) [53] 0.34±0.203 0.57±0.249 0.58±0.164 0.45±0.283 0.32±0.281 0.54±0.044 0.87±0.043 0.06±0.177

NSGP (Virgolin et al.,2020) [5] 0.45±0.083 0.55±0.434 0.69±0.219 0.58±0.307 0.24±0.586 0.51±0.240 0.82±0.174 -0.84±0.706

MGPRC (Chen et al.,2022) [8] 0.61±0.101 0.47±0.166 0.62±0.104 0.66±0.087 0.43±0.156 0.48±0.109 0.87±0.067 0.30±0.131

DSR (Peterson et al.,2021) [6] -0.39±0.831 -2.11±1.479 -0.46±0.625 -1.13±1.644 -3.13±0.767 0.12±0.245 -0.39±1.031 -349.84±0.000

PSSR (Mundhenk et al.,2021) [19] -0.10±0.433 -0.36±0.931 0.13±0.518 0.00±0.178 -1.19±1.149 0.27±0.243 0.61±0.318 -58.68±115.657

DGP (Ours) 0.63±0.118 0.65±0.144 0.72±0.069 0.67±0.087 0.58±0.147 0.62±0.066 0.88±0.017 0.32±0.127

(a) Satellite image (b) Fri c4 50 (c) Fri c0 50 (d) Fri c1 50

(e) Fri c4 100 (f) GeoOriMusic (g) Tecator (h) DLBCL

Fig. 6. Box plots on the training and test performance measured by R2 of the found mathematical expressions by the proposed DGP method against
peer competitors on the benchmark datasets. Blue and orange boxes represent the training dataset and the test dataset, respectively.

TABLE 5
Results of statistical significance tests

Datasets
DGP(training, test)vs.

GP NSGP MGPRC DSR PSSR

Satellite image (−,−) (−,−) (=,=) (−,−) (−,−)
Fri c4 50 (=,=) (=,=) (−,−) (−,−) (−,−)
Fri c0 50 (−,−) (+,=) (−,−) (−,−) (−,−)
Fri c1 50 (−,−) (=,=) (=,=) (−,−) (−,−)
Fri c4 100 (−,−) (−,−) (−,−) (−,−) (−,−)
GeoOriMusic (=,=) (=,−) (−,−) (−,−) (−,−)
Tecator (−,=) (=,=) (=,=) (−,−) (−,−)
DLBCL (−,−) (−,−) (=,=) (−,−) (−,−)

based GP structure optimization method can effectively
improve the training performance on high-dimensional
datasets. Furthermore, DGP is also comparable to state-of-
the-art GP-based SR methods including NSGP and MGPRC.
In most cases, DGP has better training performance than
NSGP and MGPRC, except on Fri c0 50 when compared
with NSGP. Finally, compared to the NN-based methods, it
is obvious that the training performance of DGP is signifi-
cantly better than DSR and PSSR on the real-world datasets.

Through the above analysis, it can be concluded that DGP
has better training performance in most cases compared
with other SR methods.

5.1.2 Generalization Performance

As is shown in Fig. 6, the generalization performance on
the test datasets is only slightly worse than the training per-
formance for GP-based SR methods. However, for the two
NN-based methods, the generalization performance is much
worse than the training performance. The mean and median
of R2 results on the test datasets are much lower, and the
distributions are much bigger, too. The generalization per-
formance of NN-based methods are even worse when tested
on the extremely high-dimensional dataset DLBCL, with R2

results below the box plots of DGP in Fig. 6. These results
show that the GP-based methods have better generalization
performance than NN-based methods on high-dimensional
real-world datasets under the same number of evaluations.

We now compare the differences in the generalization
performance of the six methods in detail. As is shown in
Table 4, the mean R2 of DGP over 30 independent runs
is higher than the baselines on all the eight real-world
benchmarks. The results of the significance tests in Table 5
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show that the R2 score of DGP is significantly better than
DSR and PSSR on all eight datasets. Compared with the GP-
based SR methods, the performance is significantly better
on six of the eight datasets compared to GP, and five of the
eight datasets compared to NSGP and MGPRC. Considering
that the generalization performance on the test data is a
more important metric, we can conclude that DGP gener-
ally achieves the best performance on the eight real-world
datasets.

We have two perspectives as to why our proposed
DGP method outperforms the competitors. First, the gra-
dient descent used in DGP allows it to keep continuously
searching for better solutions in a relatively small search
space, improving search efficiency. Second, from another
point of view, the diversifier helps by providing fresh
new samples to escape local optima. This is because the
gradient-based discrete distributions often concentrate their
probability mass on a relatively small portion of the search
space, resulting in premature convergence to locally optimal
solutions. However, the genetic operations in the diversifier
generate new individuals which may fall well outside the
concentrated region of the search space. Combining the
gradient-based optimizer and the diversifier, DGP is able
to regress better solutions more efficiently.

5.1.3 Program Size Analysis
The mean and standard deviation of the size of programs
found by the six methods are shown in Table 6. The results
of statistical significant tests on the program size are listed
in Table 7. The results show that NN-based SR methods,
especially DSR, can search for more compact models with
a much smaller number of nodes than GP-based methods.
However, given that the generalization performance of NN-
based methods on these high-dimensional datasets is much
worse than that of GP-based methods, it can be inferred
that the models found by DSR are too simple. The number
of nodes in individuals evolved by the standard GP method
is the largest on all eight datasets and far exceeds that of
other methods, likely due to bloating. The three methods
that specifically control bloating – DGP, NSGP, and MGPRC
– evolve individuals with many fewer nodes than GP. The
proposed DGP is more effective than NSGP and MGPRC
in controlling bloating, with fewer nodes in six of the eight
datasets. The length of the symbolic expressions (number of
nodes) is an important measure of interpretability, and by
this measure, DGP finds more interpretable solutions.

TABLE 6
Program size of DGP and competitors on the real-world benchmarks

Benchmark Size (#Node of the best models)
DGP GP NSGP MGPRC DSR PSSR

Satellite image 61±28.9 136±63.2 65±19.7 64±21.5 10±2.3 40±42.2

Fri c4 50 37±12.0 70±24.8 72±17.8 42±15.6 8±2.8 16±16.5

Fri c0 50 26±14.1 76±39.9 86±11.7 32±8.9 8±2.1 17±12.7

Fri c1 50 34±15.5 65±40.1 80±19.4 34±12.0 7±2.7 15±9.2

Fri c4 100 29±14.8 71±43.5 78±13.8 44±17.1 8±1.4 20±22.1

GeoOriMusic 39±25.0 13±27.8 75±17.3 10±12.9 8±1.6 16±7.9

Tecator 39±21.8 95±43.8 53±18.1 65±21.3 8±2.0 28±23.9

DLBCL 47±21.6 36±16.4 76±18.6 33±13.6 7±0.0 5±0.4

TABLE 7
Results of statistical significance tests on the program size

Benchmark
DGP vs.

GP NSGP MGPRC DSR PSSR

Satellite image - = = + =
Fri c4 50 - - - + +
Fri c0 50 - - = + =
Fri c1 50 - - = + +
Fri c4 100 - - - + =
GeoOriMusic + - + + +
Tecator - - - + =
DLBCL = - + + +

5.2 Results on the Synthetic Benchmarks

In this section, we first analyse the overall recovery results
of the methods on the synthetic benchmarks in Subsec-
tion 5.2.1. We then analyse the program size of the ex-
pressions found by different methods in Subsection 5.2.3.
Finally, we compare the methods’ robustness by adding
various noise levels to the data and analysing the results
in Subsection 5.2.2.

5.2.1 Recovery Results

TABLE 8
Recovery rates of DGP and competitors on the synthetic benchmarks

Benchmark Recovery rate (%)
DGP GP NSGP MGPRC DSR PSSR

S1 90 30 60 40 0 80
S2 80 0 10 0 0 80
S3 50 0 0 40 0 50
S4 100 50 100 100 100 100
S5 100 0 0 90 70 90
S6 20 0 0 0 20 10
Average 73.3 13.3 28.3 45.0 31.7 68.3

The overall recovery results are shown in Table 8. It can
be seen from Table 8 that the mean recovery rate of the
proposed DGP far exceeds that of four of the five other
methods on the benchmarks, which indicates that DGP can
recover accurate mathematical expressions from the data
effectively. Compared to the final method (PSSR), it is better
than PSSR on three benchmarks and performs equally on
the remaining three. The recovery rates of traditional GP
are lower than other methods and ineffective in recovering
exact expressions. Traditional GP has a tendency to generate
increasingly complex symbolic trees (due to the canonical
evolutionary approach); thus the search process of GP often
reaches a dead end. Our proposed method instead adds a
certain direction to the search process, and our introduction
of shrinking effectively limits the bloating of symbolic trees,
meaning it efficiently searches for valid expressions.

5.2.2 Robustness Analysis
According to the experiments in [6], the search difficulty
of true symbolic expressions varies with the noise level of
the target variable, so it is important to demonstrate DGP’s
robustness to noise. We evaluate the proposed DGP on noisy
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Fig. 7. The average test RMSE of different methods under different levels of dataset noises across all the synthetic benchmarks.

data by adding independent Gaussian noise to the target
variable, with mean zero and standard deviation propor-
tional to the root-mean-square of the target variable in the
training data. We found that most of the methods could not
recover the exact symbolic expressions from data at a high
noise level (i.e., > 0.06), meaning that the recovery rates
are mostly zero and do not differentiate the effectiveness of
the methods. Thus, we instead have reported the test RMSE
(Fig. 7) of the different methods on various noise levels from
0 (noiseless) to 10−1.

As is shown in Fig. 7, the performance of different
methods varies substantially across different noise levels.
For the NN-based SR methods, PSSR (which is generally
seen as an improvement of DSR), has a better average
recovery rate on noiseless benchmarks than DSR. However,
our experiments show that the robustness of PSSR is worse
than DSR: the test RMSE of PSSR is higher than DSR in
four of the six benchmarks. As for GP-based SR methods,
the test RMSE of GP and NSGP clearly increases with the
increasing levels of noise, showing they are not robust. The
robustness of MGPRC is quite promising. It can be seen
from Fig. 7 that the test RMSE of MGPRC increase slowly
with the increasing noise level and is second place on all the
synthetic benchmarks except for S5. Finally, the robustness
of our proposed DGP is convincing. Although the noise
in the training data has some influence, the performance
attenuation of DGP is relatively minor. At the highest noise
level (10−1), DGP achieves the lowest test RMSE of the six
SR methods on all the synthetic benchmarks.

These results make DGP a very promising method for
SR: it is both highly accurate and robust to noise across a
range of datasets.

5.2.3 Program Size Analysis
In this section, we compare the program size of the symbolic
expressions found by the different methods, where methods
were able to successfully recover the expression from the
data (i.e., where recovery rate was greater than 0%). This is
due to the fact that it is meaningless to compare the size of

expressions if the correct one cannot be found. The results
are presented in Table 9.

TABLE 9
Program size of DGP and competitors on the synthetic benchmarks

Benchmark Size(#Node of the best models)
DGP GP NSGP MGPRC DSR PSSR

S1 19±5.4 108±7.1 14±1.9 22±3.8 - 19±4.2

S2 34±10.4 - 42±0.0 - - 26±4.4

S3 22±3.1 - - 41±18.5 - 18±1.6

S4 9±2.0 123±51.0 12±9.7 23±8.1 7±0.0 11±4.9

S5 14±4.7 - - 32±10.5 22±9.6 21±9.3

S6 19±5.5 - - - 13±1.5 29±0.0

Table 9 shows that the overall program size of NN-
based methods are smaller than the GP-based methods,
except for DGP. NN-based methods are able to find more
compact expressions as they use an RNN to gradually
generate symbolic trees starting from a simple structure,
which effectively controls the program size of expressions.
Canonical GP again has the largest programs of all the
GP methods, indicating that there are many redundant
structures (introns) in the expressions it finds. The other two
GP-based baselines (NSGP and MGPRC) find more compact
models than the canonical GP on the synthetic benchmarks.
The program size of the expressions found by DGP is also
much smaller than the canonical GP and can rival with
the NN-based SR methods. We conclude that the symbolic
expressions recovered by the proposed DGP method can
achieve high accuracy while being concise.

6 CONCLUSIONS AND FUTURE WORK

The objective of this article was to propose an effective
GP method for SR, which can avoid the ineffectiveness
and bloating of traditional GP caused by the stochastic
nature of its evolutionary-based search approach. We have
successfully achieved this goal by proposing a new differ-
entiable genetic programming (DGP) method, which uses a
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gradient descent approach to optimize the structure of GP.
For the gradient-based optimization, a new representation
named the differentiable symbolic tree was proposed that
relaxes the discrete structure into a continuous space. In
addition, we also designed a loss function for SR, pro-
posed a unique hybrid forward propagation approach, and
formulated the backward gradient calculation. With this
design, the proposed DGP can search for the best structure
more efficiently, making it an effective method to deal with
high-dimensional symbolic regression problems compared
to the state-of-the-art. The proposed method was compared
to benchmark methods that included both GP-based and
NN-based SR approaches by testing on both real-world
and synthetic benchmark datasets. The experiment results
showed that the training and generalization performance
of DGP outperforms almost all the other GP-based and NN-
based SR methods, and that DGP produces a relatively small
solution size compared to other GP-based methods. This, in
conjunction with further robustness testing, demonstrated
that the proposed DGP is an effective tool for solving SR,
especially for high-dimensional real-world problems that
are difficult to solve with previous GP-based methods.

We note that the proposed gradient-based optimization
approach for GP is not only applicable for SR tasks but
also for other GP-based machine learning problems, which
should be explored in future work. In addition, our future
work will explore simultaneously optimizing constants and
tree structures during the training process to improve the
performance of the proposed method on SR problems with
constants. Finally, our proposed method makes use of the
final output of the expression to compute the loss even in
the early stage of the search – this potentially may lead to
the search falling into a local optimum. Thus, investigating
how to combine the search for partial expressions with the
search for overall expressions is also a potential research
direction.
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