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to many real-world applications. Machine learning is a branch of

Al based on the idea that systems can learn from data, identify i .

. .. . . e Artificial intelligence;
hidden patterns, and make decisions with little/minimal human machine learning;
interven.tion. Evolu.tione?ry compgtation is. an gmb_rella of evolutionary com,putation;
population-based intelligent/learning algorithms inspired by classification; regression;

KEYWORDS

nature, where New Zealand has a good international reputation. clustering; combinatorial
This paper provides a review on evolutionary machine learning, optimisation; deep learning;
i.e. evolutionary computation techniques for major machine  transfer leaming; ensemble
learning tasks such as classification, regression and clustering, and learning

emerging topics including combinatorial optimisation, computer
vision, deep learning, transfer learning, and ensemble learning.
The paper also provides a brief review of evolutionary learning
applications, such as supply chain and manufacturing for milk/
dairy, wine and seafood industries, which are important to New
Zealand. Finally, the paper presents current issues with future
perspectives in evolutionary machine learning.

Introduction

Artificial intelligence (AI) is a broad umbrella covering a wide range of techniques for
building systems that can simulate human intelligence including thinking, behaviours,
perception in computers. Although AI was first coined in the 1950s, its applications
have flourished in just the last several decades within its core sub-area of machine learning
(ML), where computers exhibit the ability to automatically learn and improve without
being explicitly programmed.

ML has been applied to many applications in different domains, such as in manufactur-
ing industry, finance, and biomedical problems. Its main tasks include classification,
regression, and clustering. The first two tasks are supervised learning in which a model
is learnt from a set of labelled data, while the last is unsupervised learning that does not
have labelled data. Classification is a task where each example/instance is classified into
one of the predefined categories, whereas regression predict numeric outputs for instances.
However, both aim to build a model that can correctly predict the output of an unseen
instance by observing a set of labelled instances. On the other hand, clustering algorithms
aim to learn a model that can group instances into separate clusters based on the intrinsic
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characteristics of the unlabelled data. Solving scheduling and combinatorial optimisation
problems such as determining product delivery routes and flight scheduling, as well as
analysing patterns and recognising objects in computer vision are also important research
areas in ML.

Although these ML tasks have been studied for decades, challenges still arise when
massive datasets are collected due to advanced technologies and a rapidly growing user
market. Firstly, the number of features has increased over time in different domains
such as images, gene expression, text, and web mining (Zhang et al. 2016). The search
space of recent ML tasks continues to rise. This space may be ‘infinite’ in some
domains such as materials design and drug discovery (Le and Winkler 2016). Secondly,
more and more complex applications need to be solved without domain expertise. There-
fore, more powerful search techniques are needed to find better solutions. Evolutionary
computation (EC) is a sub-field of AI that contains a family of nature-inspired algorithms.
These are population-based algorithms, which maintain a population of candidate sol-
utions (individuals) and evolve towards good/optimal solutions. By evolving multiple sol-
utions simultaneously, EC techniques are well known for their good global search ability.

EC techniques can be broadly divided into two main categories: evolutionary algor-
ithms and swarm intelligence (Back et al. 1997). Evolutionary algorithms apply Darwinian
natural selection principles to search for optimal solutions. Genetic algorithms (GAs) and
genetic programming (GP) are widely-used algorithms in this category. Both methods use
genetic operators such as crossover and mutation to evolve new individuals. While GAs
use a fixed-length bit string representation, GP can work with more flexible structures
such as trees and graphs with variable sizes. In contrast, swarm intelligence techniques
are inspired by the social behaviours of animals. Typical techniques of this branch are par-
ticle swarm optimisation (PSO) and ant colony optimisation (ACO), which mimic birds
and ants, respectively. While PSO uses information about the best-found solutions
shared among particles to guide the search towards more fruitful areas, ACO works by
simulating a communication system based on pheromones between ants about favourable
paths to food. There are also other popular EC algorithms such as differential evolution
(DE), learning classifier systems (LCS), artificial immune systems (AIS), and artificial
bee colony (ABC) algorithms (Béck et al. 1997).

With the ability to evolve multiple solutions simultaneously, EC techniques have shown
significant promise in solving multi-objective problems where optimal solutions need to
be considered in the presence of two or more conflicting objectives, e.g. minimising
both cost and travel time in flight bookings. Because it is unlikely to have an optimal sol-
ution that satisfies both conflicting objectives, a multi-objective method returns a set of
nondominated (Pareto optimal) solutions that cannot be improved in one objective
without another objective suffering (Zhou et al. 2011). Evolutionary multi-objective
optimisation (EMO) is one of the most-studied EC topics recently, with a dramatic
increase in publications over the last ten years.

Although a number of surveys exist on the use of EC for machine learning tasks (EML),
they focus on a particular task/aspect such as feature selection (Xue et al. 2016), classifi-
cation using GP (Espejo et al. 2010), a particular EC technique (Neri and Tirronen
2010), technical orientation such as EC and ML (Zhang et al. 2011), or EMO (Zhou
et al. 2011). There is no survey that covers EML techniques for different tasks with a
non-technical presentation for a broader range of readers. Given the rapid development



JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND ’ 207

and growth of this field and its role in facilitating more ML applications, this paper aims to
provide a comprehensive survey on using EC techniques for major ML tasks. The remain-
der of this section briefly summarises the current EML applications in different domains.

Current evolutionary machine learning applications

EML methods have been widely applied to real-world problems in various fields, including
agriculture, manufacturing, power and energy, internet/wifi/networking, finance, and
healthcare.

In agriculture, EML techniques are used to plan land use (Kaim et al. 2018). The
decision making in crop farming (Pal et al. 2016) and fishing (Cobo et al. 2018) have
also been addressed by EML.

EML techniques have been widely applied to manufacturing in different industries such
as dairy production (Notte et al. 2016), wine production (Mobhais et al. 2012), wood pro-
duction (Zhao et al. 2017), mineral processing (Yu et al. 2011), and transportation sche-
duling for seafood and milk products (Sethanan and Pitakaso 2016). EML methods can
find solutions that help to reduce time and cost for both production and transportation.
Supply chain optimisation has been performed using EML methods to reduce held inven-
tory and cost in supply chains of different industries such as food (Cheraghalipour et al.
2018) and fisheries (Tabrizi et al. 2018).

EML techniques have been applied to the energy industry, including load forecasting in
power systems (Liao and Tsao 2006) and wind farm design (Hou et al. 2015).

Finance is another important application area of EML. Financial data are often time
series data, which are difficult to analyse due to their temporal nature. EML methods
have been widely employed for financial data analysis (Wagner et al. 2007), market
price prediction (Bagheri et al. 2014), bankrupt ratio analysis (Lakshmi et al. 2016), and
credit risk management (Srinivasan and Kamalakannan 2018).

In healthcare and biomedical applications, EML techniques are used for gene sequence
analysis, gene mapping, structure prediction and analysis of DNA (Pal et al. 2006), and
biomarker identification (Ahmed et al. 2014). Computation of 3D protein structure has
been addressed by many EML methods (Correa et al. 2018). EML also shows promising
results in important applications such as drug discovery (Le and Winkler 2015) and
materials design (Le and Winkler 2016), where the search space is effectively infinite.

In addition, EML techniques have been applied to earthquake prediction (Asim et al.
2018), web service composition (da Silva et al. 2016), cloud computing (Guzek et al.
2015), cyber security (Buczak and Guven 2016), and video games (Yannakakis and Toge-
lius 2018). Readers are referred to (Chiong et al. 2012) for more EML real-world
applications.

Organisation

This survey is presented mainly in a task-based manner. The first three sections present
EML algorithms for classification, regression, and clustering tasks. Sections 5 and 6
discuss two large EML application areas: computer vision, and scheduling and compu-
tational optimisation, respectively. Section 7 is dedicated to evolutionary deep learning,
a hot topic in ML. Emerging topics and current issues/challenges are described in
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Section 8. Section 9 concludes this paper. Due to the page limit, we cite only representative
works. Figure 1 shows the taxonomy and structure of the paper.

Evolutionary computation for classification

EML techniques have been widely used for classification. The aim of classification algorithms
is to learn a model/classifier that can correctly classify unseen instances (test data) by observ-
ing a set of given instances (training data). Each instance is represented by a set of attributes/
variables/features, and a label. The quantity, quality, and representation of the data are
important factors influencing the performance of the learned classifiers (Tran et al. 2016b).

Although classifier construction is the main task in classification, some other tasks
related to data preprocessing are also crucial. The existence of irrelevant and redundant
features negatively affects the performance of learning algorithms. Therefore, feature selec-
tion/dimensionality reduction is widely used to remove irrelevant and redundant features,
which effectively reduces the search space of a problem and hence improves the learning
ability and running time. Feature construction is typically used to create high-level fea-
tures that can better represent the problem.

The following subsections discuss the main EML techniques that have been proposed
for these tasks and related tasks such as unbalanced or missing data.

EC for classifier construction

Many EML techniques are used for classification such as GAs, GP, and PSO. GAs were the
earliest EC technique used to evolve classification rules. Many methods have been pro-
posed for general classification problems (Vivekanandan et al. 2013) as well as for
specific domains such as text classification (Khaleel et al. 2016) and medical diagnosis
(Fidelis et al. 2000). Chernbumroong et al. (2015) proposed a GA-based method for
activity classification using data from multiple sensors to recognise a person’s activity.
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Using a similar vector representation to GAs, PSO has also been proposed for rule
induction (Zheng et al. 2014). PSO has been shown to be more flexible than GAs and
other classification algorithms.

Unlike PSO and GAs where individuals are represented using vectors, GP has more
flexible representations. Discriminant functions are a form of mathematical expression
that classify an instance into a class based on different thresholds (Espejo et al. 2010).
With a tree-based representation, GP is well suited to developing discriminant functions
(Nag and Pal 2016). GP also has a long history in evolving decision trees (Zhao 2007)
which are more effective than traditional approaches. GP is also used in inducing classifi-
cation rules (Luna et al. 2014) which are more representative and use fewer conditions.
Rivero et al. (2010) developed a GP-based method to automatically evolve artificial
neural networks. LCS are also strong at evolving rules, having been applied in boolean
function/classifier learning for multiplexer and even-parity problems (Igbal et al. 2014).

In addition to evolving classifiers, GP can also deal with common problems in classifi-
cation. Bhowan et al. (2014) proposed a GP-based classification method that can effectively
cope with unbalanced data: a common problem where the number of instances in one class
is much smaller than in other class(es), e.g. malignant traffic is infrequent compared to
normal traffic in network intrusion detection. Missing data is another common problem
in real-world applications, which negatively affects the learning performance or makes
some classification algorithms unusable. Tran et al. (2018b) developed a GP-based imputa-
tion method that can effectively impute/predict missing values based on the other features.

Instance selection is used to reduce learning time by selecting a good subset of instances
that give maximum classification performance. EC techniques have been used for this task
(Derrac et al. 2010).

By using a population-based search, EML techniques can evolve better classifiers than
using greedy search methods, which use a heuristic for making locally optimal choices in
classifier construction. Readers are referred to (Espejo et al. 2010) for further information.

EC for feature selection

Feature selection (FS) is a complex problem. With N original features, there are 2N
different feature subsets, which is impractical for exhaustive search on high-dimensional
datasets (with thousands or more features). FS is challenging due to the large search space
and possible interactions between features, which makes traditional greedy search prone to
local optima. Many non-EC FS methods have been proposed, however, these tend to be
limited by these issues. EC techniques are effective at FS as they search globally and can
evaluate the whole feature subset while considering possible interactions between features.

GAs were the first EC technique widely applied to FS. GAs use an N-dimension binary
vector to represent a feature subset where ‘1’ means the corresponding feature is selected
and ‘0’ means it is not (Zhu et al. 2010). Many strategies have been proposed to improve
GAs’ performance such as improving the crossover and mutation operators (Jeong et al.
2015), enhancing the initial population (Oreski and Oreski 2014) and using different
feature subset evaluation methods (Xue et al. 2012) to better guide the search during
the evolutionary process.

Although PSO was proposed much later than GAs, a larger number of PSO-based FS
methods have been developed during the last decade (Xue et al. 2016). To represent a
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feature subset, PSO can use bit-strings (binary PSO) as GAs or continuous vectors (con-
tinuous PSO) where a threshold is used to determine if the corresponding feature is
selected. Although binary PSO naturally suits FS, Engelbrecht (2007) observed limitations
leading to inferior performance compared to continuous PSO. Researchers continue to
improve PSO’s performance for FS in a number of ways including initialisation strategies
(Xue et al. 2014), representation (Tran et al. 2018a), updating mechanisms (Gu et al.
2018), integrating local search (Tran et al. 2016a), and evaluating features based on
their intrinsic characteristics (aka filter approach) (Nguyen et al. 2016) or performance
of learning algorithms (aka wrapper approach) (Xue et al. 2014).

Thanks to the implicit FS process in building GP trees, GP has been proposed for FS
implicitly or explicitly. Implicit FS happens in all GP-based classification algorithms
(Nag and Pal 2016). Explicit FS methods using GP have also been proposed for feature
subset selection (Sandin et al. 2012), feature subset ranking (Neshatian and Zhang
2009a), and feature space exploration (Neshatian and Zhang 2009b). More information
about FS using EC can be found in (Xue et al. 2016).

EC for feature construction

Feature construction (FC) is another technique used to enhance the representation of the
feature space. FC combines the original features to construct new high-level features with
better discriminating ability. The created features are used to augment the original ones
(Muharram and Smith 2005) or replace them as a dimensionality reduction solution
(Neshatian et al. 2012).

Compared with FS, FC is more challenging due to a larger search space as it must
choose not only a good subset of features but also an appropriate set of operators to
combine them. The optimal model to combine the original features is unknown in prac-
tice. With a flexible representation, GP can automatically evolve models without assuming
any model structure. Constructed features can be represented with tree-based GP, where
leaf nodes are features/constants and internal nodes are operators.

Many GP-based FC methods have been proposed using single-tree (Neshatian et al.
2012) or multiple-tree representations (Tran et al. 2017). GP is used to construct features
that are generally good for all classes (class-independent) (Krawiec 2002) or for a specific
class (class-dependent) (Neshatian et al. 2012). Different approaches are also used to
evaluate the constructed features during the evolutionary process such as filter (Tran
et al. 2017), wrapper (Smith and Bull 2005), or a combination (Tran et al. 2016b).

In addition to GP, GAs (Alfred 2008) and PSO (Dai et al. 2014) have also been pro-
posed and shown promise for FC.

Evolutionary computation for regression

Regression is a major ML task that attempts to identify and express the underlying
relationship between input features/variables and the target variable(s). Regression analy-
sis is utilised for forecasting in widespread areas, such as finance, traffic, medicine, and
biology (Glaeser and Nathanson 2017). To build a regression model, two main tasks
need to be solved: model identification and parameter estimation. Many EC techniques
have been proposed for these two tasks.
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EC for regression tasks

Model identification

Paterlini and Minerva (2010) developed a new GA method which not only selects the
input features but also determines the most appropriate mathematical transformations
on these features. A multi-objective GA method (Sinha et al. 2015) was proposed to ident-
ify regression models with a good balance between empirical error and model complexity.
An evolutionary algorithm was proposed for fuzzy regression by choosing the best fuzzy
function within a predefined library (Buckley and Feuring 2000). PSO was used to gener-
ate the structures of fuzzy models in a nonlinear polynomial form (Chan et al. 2011).

Parameter estimation

A large number of EC methods have been proposed for parameter estimation for compli-
cated or non-differentiable regression models. A GA method (Zhou and Wang 2005) was
used for least-squares estimation of parameters in linear regression models. A GA with
seven different crossover operators for parameter estimation has been proposed (Kapano-
glu et al. 2007). The convergence of the GA method was explored by analysing the con-
vergence of parameters in regression models with different levels of difficulty. Chen
et al. (2010) employed PSO to optimise the parameters for orthogonal forward regression.

EC for symbolic regression

Some EC techniques for regression are able to learn directly from the data and evolve both
the structure and parameters of the regression models simultaneously. This task is known
as symbolic regression. The distinguishing characteristic of symbolic regression is its inter-
pretability, which can provide domain experts with meaningful insight into the underlying
data generating process and highlight the most relevant features.

The symbolic nature of GP solutions and its flexible representation make GP a very
suitable approach for symbolic regression (Vyas et al. 2018).

Interpretability is a distinct property of symbolic models, with which the models are
able to distil novel knowledge (Schmidt and Lipson 2009). Many studies have improved
the interpretability of models evolved by GP. A typical approach is introducing parsimony
pressure into GP, which considers the size of the solutions in their fitness evaluation. Par-
simony pressure was added to the fitness function as an adaptive penalty based on growth
metrics in individuals and the population (Poli and McPhee 2008). A new FS method
based on a permutating test was developed, producing GP regression models with good
interpretability (Chen et al. 2017).

Prediction/generalisation ability is another important metric for regression techniques.
The validation set, which is the most widespread mechanism for improving generalisabil-
ity in ML, is also used for symbolic regression (Schmidt and Lipson 2009). Geometric
semantic GP, which drives the search in GP using the semantic information, has been
shown to have good prediction performance (Chen et al. 2018b).

Controlling the functional complexity of models is an effective way to improve predic-
tion performance. Tikhonov regularisation was introduced into GP to control model com-
plexity (Ni and Rockett 2015). Vladislavleva et al. (2009) used the order of nonlinearity
(based on the minimum degree of Chebyshev polynomials) to approximate the complexity
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of GP models. Chen et al. (2018) introduced the Vapnik-Chervonenkis dimension to
directly measure and control the complexity of GP solutions.

Some other EC techniques are also used for symbolic regression. However, most of
them are in their infancy. LCS was recently used for symbolic regression for the first
time (Naqvi and Browne 2016). AIS (Johnson 2003) was applied to solve symbolic
regression tasks. Grammatical evolution (O’Neill and Ryan 2001), which evolves binary
strings to select production rules in a grammar definition to generate any kind of pro-
grammes, can also be used for symbolic regression.

Evolutionary computation for clustering

Often, data may have no labels and so the previously discussed supervised ML methods
cannot be used. ML algorithms developed for this scenario are called unsupervised learning
algorithms, which discover underlying patterns within the data (Nanda and Panda 2014).
There are several approaches to this problem, but the most studied is clustering. Clustering
algorithms split a dataset into a set of clusters, so that data within a cluster are similar, while
data in distinct clusters are different. A good clustering result (partition) gives insight into a
dataset by splitting it into ‘natural’” groups. Clustering is widely used in real-world tasks such
as text mining, bioinformatics, and image categorisation (Nanda and Panda 2014).

EML has been widely applied to clustering problems (Hruschka et al. 2009) due to its
ability to find good partitions in reasonable computational time on ‘big data’ or when the
number of clusters (K) is not known in advance (Garci’a and Gomez-Flores 2016). The
field of evolutionary clustering algorithms can be split into two categories: fixed algorithms
that require that K is known, and automatic algorithms which discover K themselves. Fixed
clustering algorithms are prevalent historically, whereas most recent work tackles the more
difficult automatic clustering problem. The third category of algorithms which has
emerged recently uses feature reduction to improve clustering performance. Traditional clus-
tering approaches assume all features of a dataset to be equally useful. This is often untrue: for
example, clustering weather records by ‘day of the week’ is clearly less useful than by ‘daily
rainfall’. This becomes even more problematic in high-dimensional datasets. EC has also
recently been used to reduce the dimensionality of data in clustering (Alelyani et al. 2013).

Evolutionary fixed clustering

The first EC methods used for clustering were GAs, and this continues to be the most
popular approach. Initial work (Krovi 1992) used primitive encodings (representations)
on small datasets, with two or three clusters and at most 150 instances. Since then, sub-
stantial progress has been made on extending GAs to much more difficult problems,
with over 40 clusters, and thousands of instances. Several new encoding schemes have
been proposed that are suited to different clustering problems (Hruschka et al. 2009).

The label-based encoding scheme represents a partition as a vector of length N for N
instances, where each instance has a label of the cluster it is in. This encoding was first
proposed in the binary form (K=2) (Krovi 1992), but more general forms have been
explored since, such as bioinformatics with 16 clusters (Lu et al. 2004). In recent years,
as clustering has been applied to larger datasets, this encoding is seldom used due to its
inefficient representation.
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The centroid-based encoding scheme is the most popular in recent EC clustering work,
with an encoding length of K x D for D dimensions in the data. This encoding represents
each cluster by a set of D features which form the cluster centre (centroid). Each instance is
assigned to the cluster whose centroid is closest by distance. One of the pioneering works
in this field proposed a hybrid approach of a GA and k-means clustering to balance global
and local search (Bandyopadhyay and Maulik 2002). PSO is also often used with this
encoding as it can efficiently optimise real-valued problems. The first approach was pro-
posed for image clustering (Omran et al. 2005), with good results compared to GA and
traditional methods. Other swarm intelligence methods such as ACO have also seen
some use (Handl and Meyer 2007).

GP has also been briefly investigated for fixed clustering. Multi-tree GP was proposed
for clustering, where each tree represents a cluster, and an instance is assigned to the
tree producing the maximum output (Boric and Estévez 2007). GP is also used to build
ensembles of clustering algorithms to produce more robust and accurate partitions
(Coelho et al. 2011).

Evolutionary automatic clustering

One of the seminal works in evolutionary automatic clustering is MOCK (Handl and
Knowles 2007). MOCK uses a graph-inspired label (locus) GA representation, where
each instance’s label indicates an instance it has an edge to. The set of graphs in this encod-
ing represents the set of clusters. This encoding is shape-invariant, i.e. clusters are not
assumed to be a certain shape (e.g. hyper-spherical) as in many clustering methods.
The use of a multi-objective fitness function was also very novel. Recently, many EMO
clustering methods have been proposed (Garci’a and Gémez-Flores 2016), including a
number of extensions to MOCK (Garza-Fabre et al. 2018). Other graph-inspired tech-
niques have been proposed, including GPGC, which uses GP to evolve tailored similarity
measures for clustering problems (Lensen et al. 2017a).

A flexible-length centroid encoding (Sheng et al. 2016) and a medoid-based encoding
have also been used for automatic clustering, primarily with GAs or PSO. A medoid-based
encoding is a binary encoding of length N, where an instance is coded as a ‘1" if it is a
medoid and ‘0’ if it is not. A medoid indicates that an instance is the centre of a
cluster. This has the advantages of a fixed-length encoding, while also allowing K to be
discovered automatically (Lensen et al. 2016).

Many other EC algorithms such as DE, ABC, and GP have also seen some use for auto-
matic clustering (Garci’a and Goémez-Flores 2016).

Evolutionary clustering with feature reduction

NMA_CEFS (Sheng et al. 2008) was a pioneering GA method that simultaneously performs
feature selection and clustering, selecting features tailored to the clusters found. Recently,
PSO-based approaches have been investigated using sophisticated initialisation and local
search methods (Lensen et al. 2017c). Feature weighting for clustering has also been pro-
posed (O’Neill et al. 2018).

FC methods are very effective at improving performance in classification tasks (Espejo
et al. 2010) but have seen little use in clustering. An initial wrapper approach was proposed
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using GP for FC to improve k-means clustering (Lensen et al. 2017b), and embedded
approaches have also been proposed (Nanda and Panda 2014). Given the upsurge of
high-dimensional data, it is expected that future work will focus on new ways of incorpor-
ating feature manipulation techniques into clustering.

Evolutionary computer vision

Utilising EML to tackle a variety of problems in different computer vision tasks such as
image classification, image segmentation, object detection, feature extraction, image com-
pression, image registration, image restoration, and image enhancement has received sig-
nificant attention over the last few decades. Generally, EML for computer vision problems
and applications can be categorised based on the application domain (e.g. medical, mili-
tary, and environment), task (e.g. classification, segmentation, and feature manipulation),
and the solution representation (e.g. tree structure, and chromosomes or strings of bits). A
brief review of EML methods in computer vision is provided in the following subsections,
and interested readers can check (Olague 2016).

EC techniques for image preprocessing

Designing a method to handle tasks such as noise cancellation, image segmentation and
image enhancement often requires human intervention and sufficient domain knowledge.
EC techniques have been successfully utilised to automatically handle such tasks and such
methods do not only remove/reduce the human intervention requirement but also evolve
potentially better models compared to the domain-expert designed ones.

Image segmentation aims divides an image into different regions based on some criteria
such as the connectivity of the pixels. GP has been applied to image segmentation by auto-
matically evolving a similarity measure (Vojodi et al. 2013) or using object segmentation
(Liang et al. 2015). PSO was utilised for road sign segmentation (Mussi et al. 2010), and
region identification (Dhanalakshmi et al. 2016). Defining the threshold values for image
segmentation is a challenging task that has been tackled using AIS (Cuevas et al. 2012).
Other EC techniques such as DE (Maulik and Saha 2009) and ACO (Tao et al. 2007)
show significant promise in improving fuzzy clustering for image segmentation by group-
ing pixels into different clusters.

Edge detection is a very important task that finds the edges between different regions in
an image, which helps in finding the boundaries of an object of interest. Lu and Chen
(2008) utilised ACO to improve the performance of edge detection; GP has been used
to automatically evolve an edge detector in (Fu et al. 2015).

Salient object detection (SOD) identifies the most attention-grabbing regions in an
image, as a form of preprocessing that focuses the search into a specific part of the
image. Finding an optimal set of weights for different features to improve SOD has
been achieved using PSO (Afzali et al. 2017).

EC techniques for image feature manipulation

Traditionally, building or training an image classifier requires a set of features, as operating
directly on the raw pixel values is very challenging due to the large search space. Feature
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manipulation, including feature extraction, feature construction and feature selection, is
very important in computer vision and pattern recognition.

GP has been utilised for automatically evolving models that improve existing image
descriptors such as speeded-up robust features (Perez and Olague 2013); EMO has been
adopted for extracting image features (Albukhanajer et al. 2015).

Image descriptors are used to identify different image keypoints, e.g. lines, corners
and spots, in an image and generating the corresponding feature vector. In (Al-Sahaf
et al. 2017), GP was utilised to automatically evolve image descriptors that automati-
cally detect keypoints for multi-class texture image classification. This method mimics
the well-known and largely utilised local binary pattern (LBP) image descriptor. While
both methods operate in a similar fashion, i.e. using a sliding window, they differ in
being manually designed by domain-experts (LBP) or automatically designed by the
evolutionary process. Furthermore, LBP is designed to detect a specific set of
keypoints whereas GP-based descriptors automatically design the keypoints to be
detected.

PSO has also been used in conjunction with SIFT for face recognition (Lanzarini et al.
2010). Furthermore, selecting optimal image features by utilising accelerated binary PSO is
investigated in (Aneesh et al. 2011). In (Valarmathy and Vanitha 2017), AIS was used for
image feature selection in MRI images.

EC techniques for object detection and image classification

Object detection aims to localise the different objects in an image. Bhanu and Lin (2004)
used GP for object detection, with promising results.

Image classification is the task of categorising images into different groups (classes)
based on their visual content. In order to detect breast cancer in images, GP has been
used to classify different cut-outs of medical images into malignant and benign classes
(Ryan et al. 2015), whereas Ain et al. (2017) tackled the problem of skin cancer classifi-
cation in images by utilising GP with a mix of biomedical and LBP features. A GP-
based classification method for identifying active tuberculosis in X-ray images was pro-
posed by Burks and Punch (2018). Motivated by the promising results achieved in (Li
and Ciesielski 2004), Abdulhamid et al. (2011) further investigated the potential of utilis-
ing loops with GP for binary image classification, revealing a number of interesting
observations.

Feature extraction is a crucial task that identifies/generates informative features to dis-
criminate the different classes/objects. GP has been shown to perform very well in this
regard (Al-Sahaf et al. 2012), even with the presence of noise (Albukhanajer et al.
2015). Perez et al. (2010) utilised PSO to extract features for face and iris localisation.
PSO has been used for object (Perlin et al. 2008) and face recognition (Ramadan and
Abdel-Kader 2009).

Template matching is a well-known approach for object detection and recognition. An
ACO-based method for fingerprint matching was proposed in (Cao et al. 2012), and the
results were shown to outperform the state-of-art methods.

Other EC techniques such as LCSs (Kukenys et al. 2011), and AISs (Wang et al. 2008)
have been proposed for image classification, and an AIS based identity recognition system
was proposed by Silva et al. (2015).
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Evolutionary computation for scheduling and combinatorial optimisation

Scheduling and combinatorial optimisation is an important research area with many real-
world applications such as manufacturing and cloud computing. These areas have been
studied extensively as pure optimisation problems. Recently, more research regards
them as machine learning tasks due to the following two main motivations.

First, the environment is often dynamic in reality. For example, in manufacturing, job
orders arrive in real time and need to be scheduled immediately. Traditional optimisation
approaches such as mathematical programming are not fast enough to respond, and it is
necessary to find a heuristic/rule that can generate/adjust the solution in real time effectively.

Second, manually designing an effective optimisation algorithm for a complex problem
requires substantial domain expertise and time. Using ML techniques to automatically
design algorithms/heuristics saves significant human effort.

ML approaches that search for promising heuristics are called hyper-heuristics (Burke
et al. 2013). EC methods have been successfully applied as hyper-heuristics by modelling
each individual as a heuristic. In contrast to conventional optimisation, the fitness evalu-
ation is key when EC methods are used as hyper-heuristics. A heuristic is evaluated by
applying it to a set of training instances, generating solutions. The fitness of a heuristic
is set as the average quality of the solutions it generates.

In the rest of this section, we will provide a brief review on evolutionary hyper-heuris-
tics for classic problems including scheduling, routing and bin packing.

Evolutionary hyper-heuristics for scheduling

Scheduling aims to design a schedule to process a set of jobs by a set of machines at
minimal cost and time. Dispatching rules are commonly used to generate schedules in
an online fashion. GP-based Hyper-Heuristics (GPHHs) have achieved great success in
automatically designing dispatching rules.

In a standard job shop scheduling problem, a dispatching rule is invoked whenever a
machine becomes idle. It uses a priority function to prioritise the jobs in the machine’s
queue and decides the job to be processed next. There have been a number of studies on devel-
oping GPHHs to evolve such priority functions for the standard job shop scheduling problem.
Branke et al. (2016) and Nguyen et al. (2017) give comprehensive surveys of this area.

In addition to the standard job shop scheduling problem, people have also applied
GPHHs for solving other problem variants, such as multi-objective job shop scheduling
(Nguyen et al. 2014) and flexible job shop scheduling (Yska et al. 2018).

Evolutionary hyper-heuristics for routing

A routing problem seeks optimal routes subject to some constraints, e.g. delivering to all
customers, or visiting all the attractions on a trip.

Oltean and Dumitrescu (2004) employed GPHHs to evolve heuristics which decide the
next node to add into the current partial tour in the travelling salesman problem. Weise
etal. (2012) developed a GPHH algorithm to evolve heuristics for the arc routing problem,
which uses a vehicle to serve the streets on a road network, where each street has an uncer-
tain request. Whenever the vehicle becomes idle, it calculates the priority of the remaining
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streets to decide the street to be served next. Here, GPHH evolves the priority function. Liu
et al. (2017) considered a more realistic problem model and improved the performance of
GPHH by designing more features. Jacobsen-Grocott et al. (2017) developed a GPHH
approach to the vehicle routing problem with time windows, which serves the nodes
rather than edges.

Evolutionary hyper-heuristics for bin packing

Bin packing aims to minimise the number of bins needed to store a set of items. A typical
heuristic for bin packing starts with empty bins. Then, for each item, the heuristic calcu-
lates a priority value for each bin based on the current situation and places the item into
the bin with the best priority. GPHHs have been used to evolve the priority function.
Burke et al. (2006) developed a GPHH for one-dimensional bin packing. Burke et al.
(2010) and Allen et al. (2009) extended the problem to two-dimensional and 3-dimen-
sional packing, respectively.

Evolutionary deep learning

Deep learning (DL) is a class of ML algorithms that use multiple layers of nonlinear pro-
cessing units to solve a problem (LeCun et al. 2015). DL has achieved remarkable perform-
ance in addressing increasingly complex data with large feature sizes from different
domains such as images, gene expression, text, and web mining (Zhang et al. 2016),
due to it automatic feature generation and selection capabilities (Bengio 2009). Evolution-
ary DL (EDL) aims at using EC approaches to improve the usability or improve the per-
formance of DL algorithms. Existing EDL algorithms are mainly composed of neural
network-based (NN-EDL) and GP-based (GP-EDL) algorithms.

Neural network-based evolutionary deep learning

NN-EDL algorithms mainly focus on designing network architectures, optimising the
weights, and solving multi-objective optimisation problems.

Existing approaches for designing architectures can be divided into two different
categories: supervised NN-EDL and unsupervised NN-EDL. One typical work on NN-
EDL for unsupervised deep learning is the EUDNN method (Sun et al. 2018). Existing
supervised NN-EDL algorithms includes Large-scale Evolution (Real et al. 2017),
EvoCNN (Sun et al. 2017), and so on.

There are two main different weight optimisation strategies. The first directly encodes
the weights (Lehman et al. 2018), whereas the second searches for the best weights
indirectly (Sun et al. 2018).

An NN-based deep learning algorithm with promising performance usually has a large
number of parameters, necessitating a large amount of computational resources. However,
computational resources are often limited, such as on mobile devices. Thus, maximising
performance and minimising computational resources are two conflicting objectives, i.e.
a multi-objective (MO) optimisation problem. NN-EDL for MO was highlighted by
Sun et al. (2017) and specifically investigated by Dong et al. (2018).
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Because NN-based DL often has a large number of parameters, high-performance hard-
ware is used to accelerate their performance, such as the graphics processing unit (GPU),
field-programmable gate array and tensor processing unit.

GP-based evolutionary deep learning

GP has been used to achieve DL without NNs. The flexible structure of GP allows it to
learn abstract and compact representations with suitable model complexity in a layer-
by-layer feature transformation manner, which meet the key characteristics of DL.

GP-EDL has been used to integrate multiple steps to learn a single high-level feature for
image classification in a single GP tree. The first method was a multi-tier GP using image
filtering, aggregation, and classification tiers to perform region detection, feature extrac-
tion, feature construction, and image classification simultaneously (Atkins et al. 2011).
Bi et al. (2018) proposed a multi-layer GP method with utilisation of image-related oper-
ators to learn high-level features for image classification.

GP-EDL has also been proposed to learn multiple features. Shao et al. (2014) pro-
posed a multi-objective GP with a multi-layer structure to learn features for difficult
image classification tasks. Rodriguez-Coayahuitl et al. (2018) defined a structured
layered GP for representation learning and introduced deep GP. A GP auto-
encoder was designed with an encoding forest and a decoding forest to transform
an original representation into a new representation of fewer features using arith-
metic operators.

Emerging topics and current issues

This section provides a number of emerging topics and summarises the major issues/chal-
lenges in EML while providing future perspective.

Emerging topics

Evolutionary transfer learning

Transfer learning has become increasingly popular in ML in recent years. It aims to
improve the performance of learning algorithms in a target task/domain by using useful
knowledge extracted from a source task/domain (Pan and Yang 2010). In transfer learn-
ing, it is important to address three questions: what to transfer, when to transfer, and how
to transfer (Pan and Yang 2010).

Recently, EC methods have been used with transfer learning. Igbal et al. (2017) trans-
ferred subtrees learnt by GP on the source domain to improve the performance of GP on
related target tasks. Jiang et al. (2018) transferred the probability distributions of solutions
to population generation in a dynamic MO algorithm to reduce the computation cost. The
parameters of DE learnt from the source problems were transferred to the target problems
by Gong et al. (2015).

More approaches can be investigated in EC using instances transfer, feature represen-
tation transfer, parameter transfer, and rational-knowledge transfer (Pan and Yang
2010).
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Evolutionary ensemble learning

Ensemble learning algorithms learn multiple learners/models from the training data. An
ensemble consists of multiple base learners, which are learnt using traditional learning
algorithms. Commonly used ensemble methods include bagging, boosting and stacking
(Zhou 2012). Generally, to construct a strong ensemble, the base learner needs to be accu-
rate and diverse (Zhou 2012).

EC methods are also beneficial in ensemble learning in different ways. EC has been
combined with learning algorithms to obtain strong SVM ensembles (de Araujo
Padilha et al. 2016) and NN ensembles (Pulido et al. 2014). EC has also been used to
evolve ensembles using bagging and boosting (Folino et al. 2006). Finally, EMO has
been used to improve the diversity of ensembles for difficult problems (Bhowan et al.
2013). Further development of EC in ensemble learning is expected to address the diversity
of base learners and the interpretability of ensembles.

Automated machine learning (AutoML)

AutoML aims to automate ML techniques, allowing people without ML domain knowl-
edge to use them for problem-solving. An AutoML method optimises the integration of
different methods and their hyper-parameters for data preprocessing, feature engineering,
and learning. Well-known AutoML methods include Auto-WEKA, Auto-Sklearn and
Auto-Keras, which are based on existing ML libraries.

EC methods have also been used for AutoML. The well-known tree-based pipeline
optimisation tool (TPOT) uses GP to evolve a set of data transformations and ML
models (Olson and Moore 2016). Chen et al. (2018a) developed an Autostacker method,
using an EC algorithm to find the optimal hyper-parameters for ML pipelines. There are
still many unexplored opportunities in this topic, such as EMO for AutoML, which need
to be investigated in the future.

Current issues

Despite its successes, EML remains an active research area with challenges and opportu-
nities. This section discusses some of its major issues: its theoretical foundation, compu-
tational cost, scalability, generalisability, and interpretability.

There has been some theoretical analysis of EML methods on running time, conver-
gence guarantee, and parameter settings (Auger and Doerr 2011). However, current
EML methods still lack mathematical foundation, which may prevent scientists and prac-
titioners from using EML methods.

Computational cost is another major issue in existing EML methods. EML methods
evaluate a population of individuals at each generation, which often makes them more
expensive than many traditional ML methods.

Scalability is a common problem in EML where learning methods do not scale well
when datasets increase in size. An increase in the number of features and the number
of instances often requires larger memory and longer computation time. This may limit
the viability of EML methods in large-scale problems.

Like most ML techniques, EML methods also face the challenge of poor generalisability,
due to insufficient data, overfitting, and poor feature choice. For EML methods, poor gen-
eralisability is often due to overfitting, where the learnt model perfectly fits the training
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data, but works poorly on unseen data. The issue of overfitting in EML warrants further
investigation in the future.

Interpretability is another important issue in EML and ML. Good interpretability of a learnt
model not only provides insights into why it obtains a result but also encourages experts to
accept and reuse the model. The use of arcane features and complex models can often lead
to poor interpretability. Among EML methods, several methods such as tree-based GP have
good interpretability of solutions, which can be further investigated in the future.

Conclusions

This paper provided a comprehensive review of major EC techniques for ML tasks, cover-
ing both supervised and unsupervised tasks, and applications. A number of emergent tech-
niques such as evolutionary deep learning and transfer learning were studied. This paper
also discussed major current issues and challenges in this area, including scalability, gen-
eralisability, and interpretability/comprehensibility of evolved models.

The fast development of hardware such as GPU devices and cloud computing facilities has
allowed previously impossible EML tasks to become reality. Involvement and investment
from large corporations such as Google, Microsoft, Uber, Huawei, and IBM have made
EML methods more practically useful. It is anticipated that EML methods will play a signifi-
cant role in Al and ML in the next ten years. EML is expected to be applied to most real-world
data mining and big data tasks and applications in our daily life. In the future, the Al and EC/
ML group at Victoria University of Wellington will seek research collaborations with col-
leagues who are interested in using Al in science, engineering, commerce/business, huma-
nities and social sciences, education, law, and in the primary industries of New Zealand.
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