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ABSTRACT

As machine learning models become increasingly prevalent in ev-
eryday life, there is a growing demand for explanation of the pre-
dictions generated by these models. However, most models used
by companies are black-boxes in nature, without the capacity to
provide explanations to users. This reduces public trust in these
models, and exists as a barrier to adoption of machine learning.
Research into providing explanations to users has shown that local
explanation techniques provide more acceptable explanations to
users than attempting to explain an entire model, as a user often
does not need to understand the entirety of a model.

This work builds on prior work in the field to produce a compet-
itive method for high-fidelity local explanations utilising genetic
programming. Two different data representations targeted towards
both users with and without machine learning experience are eval-
uated.

The experimental results show comparable fidelity to the state-
of-the art, while exhibiting more comprehensible explanations due
to including fewer features in each explanation. The method enables
decomposable explanations that are easy to interpret, while still
capturing non-linear relationships in the original model.
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1 INTRODUCTION

Explainable AT (XAI) is a field of Al research that seeks to under-
stand and explain how Al and machine learning (ML) models are
making decisions. There are a number of reasons why these expla-
nations are important, from users and lawmakers trusting these
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decisions to the designers of the models ensuring the models are
relying on real causal relationships and not incidental connections.

The scope that an XAI method can focus on to provide expla-
nations can take two major forms. The first is global explanation,
which aims to explain an entire model to the user. The second is
local explanation, which instead only explains single predictions or
groups of predictions. While both of these scopes provide different
benefits, local explanations are more suited to explaining machine
learning models to end-users as a user does not need to understand
the entire model: they only care what is relevant to their specific
situation [6].

One avenue to produce a local explanation is through a local
surrogate model: training a new, more interpretable model that is
used as the explanation for the original prediction. The current
standard of these is LIME [8], which explains a prediction by train-
ing a locally weighted linear classifier as the surrogate model. One
major limitation of LIME is that the use of a linear model limits
the similarity to the original model that can be reached. In addition
to this, LIME utilises a feature selection method that will always
select a set number of features from the data. Hence, it can often
select either too many features, producing a needlessly complex
explanation, or too few features, producing an explanation that
does not match enough to the original prediction.

There are a number of challenges in providing optimal local
explanation models for predictions. First, the model must be able
to capture enough of the behaviour of the original model to give an
accurate picture of the prediction. Second, the model must be able
to be understood by a non-expert user or be able to be explained
in such a way that it provides an acceptable explanation to a non-
expert user. Finally, the model should utilise as few data features as
possible in order to produce an explanation that is able to be prop-
erly comprehended by a user. We posit that Genetic Programming
(GP) as an explanation technique is able to meet all three of these
challenges, as it is known to be an algorithm that performs well
on both accuracy and interpretability [5] that will automatically
reduce the considered feature set without needing explicit instruc-
tion to do so [10]. However, prior GP-based research to produce
local explanations [3] has neglected to address the first challenge
as a lack of localised weightings in the data generation results in a
global explanation as opposed to a true local explanation.

This paper introduces a technique utilising GP to provide high fi-
delity local explanations for predictions made by black-box machine
learning models. These explanations are locally weighted against
the prediction being explained, and the tree structure allows for
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strong decompositional explanation. The trees are quantitatively
shown to utilise fewer features from the data than the current
standard algorithms, while exhibiting competitive fidelity. The key
contributions of this work are to:

e Propose a new approach using GP to produce local expla-
nations for predictions made by machine learning models.
Unlike previous research applying GP to produce local ex-
planations this approach is shown to work on multi-class
classification problems, as most real-world applications are
not binary classification.

e Demonstrate the capability of the proposed approach to
produce high fidelity explanations that utilise minimal data
features through quantitative comparison with LIME, the
modern standard of local explanation models. Unlike LIME,
this approach allows for explanation involving non-linear
decision boundaries due to the flexible model structure of
GP.

2 BACKGROUND
2.1 Explainable AI Evaluation

It is often a relatively simple task to determine an optimal predic-
tion in supervised ML domains. For example, many classification
algorithms will use accuracy as a comparison metric, with a higher
accuracy corresponding to a better model. However, as defined by
Robnik-Sikonja and Bohanec [9], in an XAI context accuracy is
the ability of the explanation model to generalise to unseen data,
while fidelity is defined as the ability of the explanation to match
the actual predictions of the model being explained. Given these
definitions, this work focuses on the fidelity of the explanations.
In addition, this work focuses on comprehensibility: the ease with
which a non-expert user can understand a provided explanation.

2.2 Local Surrogate Explanation Models

Given the task of providing an explanation for a model in an ML
context, a common approach is to utilise a simpler, more intrin-
sically comprehensible model and treat this model as a surrogate
to provide an explanation for the original model [7]. One reason
for this is that it is a simple way to explain a completely black-box
model, only needing to know inputs and outputs to produce an
explanation. A local surrogate model is a surrogate model that aims
to only explain a single prediction or group of predictions, rather
than explaining the entire model. This allows the explanations to be
considerably less complex, as they only need to explain the decision
boundaries that impact that prediction [7].

Local Interpretable Model-agnostic Explanations (LIME), pro-
posed by Ribeiro et al. [8] is one such explanation method. It is the
most well-known of these methods, often representing the entire
scope of local surrogate models in published works. LIME proposes
a framework to produce a sparse linear model as the interpretable
model around a single prediction, using a simplified representation
of the original data in order to produce a more interpretable model.

There are three major steps LIME takes to produce an explana-
tion. First, it creates a synthetic dataset of instances around the
instance being predicted, and weights them based on an exponential
kernel. This dataset is created as a binary dataset, with the method
used to produce this dataset differing depending on the type of data
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being explained. Second, it selects 10 features using Lasso. Finally,
it trains the linear model using these 10 features in the synthetic
data, and uses this model as the surrogate explanation.

2.3 Related Work

There are two major pieces of work that aim to provide a surrogate
GP model for a more complex black-box model. Evans et al. [2]
proposed a method to approximate a given black-box model with
a single GP tree, training the GP with the original feature values
of the data and the predicted class labels from the black-box. This
provides a global explanation, approximating the behaviour of the
entire model using the GP tree. A drawback with this approach,
however, is that the same data is used to train both the original
model and the surrogate, with the only difference being that the
target values are the outputs of the original model instead of the
targets from the data. A more representative global explanation
method would be to instead sample new data from the same dis-
tribution as the original data, as this would ensure that the GP
surrogate is explaining the workings of the model and not simply
retraining on the same information as the original model

Ferreira et al. [3] later proposed an algorithm aptly named Ge-
netic Programming Explainer (GPX), producing a local explanation
model by using GP to explain a single prediction. However, there are
two major drawbacks to this algorithm. First, the method samples
the synthetic data from around the initial prediction in a multivari-
ate Gaussian distribution, but does not provide any weightings to
these synthetic instances. This reduces the trust that the produced
GP trees are locally faithful to the prediction being explained, and
faces a similar problem as the global explanation method proposed
by Evans et al. Secondly, GPX can only explain predictions made
on binary classification tasks, as the GP implementation used will
simply predict one class if the output of the GP tree is greater than
0.5 and the other if the output is less than 0.5.

3 PROPOSED METHOD

The proposed approach utilises GP to explain a single prediction
made by a machine learning model. To perform this, a synthetic
dataset is created, based around the instance being explained. There
are two different representations used for this synthetic dataset, de-
scribed below in Section 3.1. Once this synthetic dataset is created,
a kernel is used to weight each synthetic instance based on their
distance from the original instance being explained. There are two
kernels used in this work, one based on the kernel shown in the
work by Ribeiro et al. [8], and one based on the subsequent pub-
lished library. The standard kernel is shown in Equation (1), where
7(z) is the weight assigned to synthetic instance z, D(z) gives the
Euclidean distance from z to the instance i being explained, and
o is the kernel width defined by /dim(i) = 0.75. The square root
kernel is defined the same, except the result of 7(z) is then square
rooted. There has been some criticism of the LIME kernel definition
[4], however for a fair comparison between our proposed method
and LIME the original definition is used.

7(2) = exp(=D(2)*/o®) (1)

The synthetic dataset and weightings are then used as the input data
in a GP learning algorithm, eventually producing a final population
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of trees. The fittest tree is taken from this population, providing
the final explanation model. The GP algorithm used is described
below in Section 3.2.

3.1 Synthetic Data Representation

There are two main approaches to data representation for the syn-
thetic data taken in this work, one inspired by Ferreira et al. [3]
and one inspired by Ribeiro et al. [8]. The first is to sample con-
tinuous data from the area around the original instance through a
multivariate Gaussian distribution.

The second data representation explored is similar to the one
used by Ribeiro et al. [8], representing the synthetic data as a
vector of binary values. In non-technical terms, a 1 in this vector
represents a feature that is similar in value to the original instance,
and a 0 represents a feature that is further away in value. To create
this binary data, the original continuous data is binned into distinct
sets, and features are sampled randomly from each bin label. The
feature is then set to 1 if it is in the same bin as the original instance,
or 0 otherwise.

The final step of the synthetic feature space generation is to
replace one of the generated instances with the original instance
being explained, to ensure the original data is still being considered.
It is worth noting that with the given kernel definition, the original
instance will always be assigned the highest weight.

Once the synthetic representation of the feature space has been
generated, the target labels are created. This is done through using
the black-box being explained to produce predictions for these rep-
resentations. For the first data representation, the raw data is used
for this, and for the second data representation, the reconstruction
is used. This works best with black-box models that produce a prob-
abilistic output as it turns the prediction task for the explanation
into a regression problem, which GP is better suited towards. The
target labels p for the GP evolutionary process are then recorded as
the predicted probability of the original class label of the instance
being explained.

3.2 GP Method

A standard GP algorithm is used in this work, following an iterative
procedure of selecting a given number of the fittest individuals
in the population to carry into the next generation unchanged,
then probabilistically choosing between mutation and crossover to
create the remainder of the new population.

The fitness function used is the weighted mean squared error
between the GP output and the synthetic labels, given in Equa-
tion (2). This treats the task of explaining categorical predictions
as a regression problem.

1 n
fitness = o ; mi(yi = pi)* @)

4 EXPERIMENTAL DESIGN
4.1 Datasets

Nine datasets are used to evaluate the proposed method. Seven
were sourced from the UCI machine learning repository, one (kc2)
from the OpenML platform, and the final dataset (Penguins) is from
an online R repository. These are all classification datasets, with
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Table 1: Chosen datasets

Name Features Instances Classes
Penguins 4 333 3
Breast Cancer Wisconsin (BCW) 10 699 2
Wine 13 178 3
Segmentation 18 2310 7
kc2 21 522 2
Steel Plates Faults (SPF) 27 1941 2
Ionosphere 33 351 2
Dermatology 34 366 6
Madelon 500 4400 2

numbers of features ranging from 4 to 500, numbers of instances
ranging from 178 to 4400, and number of classes ranging from 2
to 7. This gives a good representation of a range of different tasks.
The datasets are shown in Table 1, ordered by the approximate
complexity posed by the classification task.

4.2 Experiment Setup

For each combination of data representation and kernel function,
the following experimental steps are taken:

(1) Train a black-box model on the provided training data. For
these experiments a random forest classifier was used as
an example of a performant black-box model that does not
require much prior parameter tuning. However, any black-
box model could be used.

(2) Select a single random instance from the data.

(3) Use the black-box model to predict the class of the instance.

(4) Produce an synthetic dataset around the chosen instance
as described in Section 3.1. For the sake of this work, this
dataset is always created with 1000 instances in order to
provide a strong range of differently weighted values.

(5) Produce weightings for each instance using the chosen ker-
nel function.

(6) Use the GP method described in Section 3.2 to produce an
explanation model.

(7) Perform algebraic simplification on the final GP tree.

(8) Repeat from Step 2 five times, using the same black-box
model but a different chosen instance.

The GP training is performed with a population size of 120, 1000
generations, 5-tournament selection, one point crossover, subtree
mutation, 3-elitism, and mutation and crossover probabilities of
0.1 and 0.9 respectively. These parameters were found in initial
experimentation to work well for a range of datasets. While these
could be improved for each specific dataset, the goal of this work is
to produce an explanation method that works without excessive
tuning on the part of a user in order to find a useful explanation.
As it can not be expected for an end user to need to tune these for
each specific task, we have elected to keep them the same across
each dataset.

To ensure the results are not biased to specific black-box models
or instances chosen and to give enough data for statistical signif-
icance testing, each algorithm and dataset undergoes the above
steps 30 times with 30 different random seeds.

In order to provide a fair comparison to prior work, the above
steps are also repeated on the LIME method described by Ribeiro et
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Table 2: GP Significant results compared to LIME

Data Representation Kernel Features Selected  Fidelity
. Standard || 473 | 07T9]
Continuous Sqrt 512 1181
. Standard || 272 671
Discrete Sqrt 313 ] 513

al. [8]. This is different than their evaluation in the original paper,
as they focused more on ensuring specific features were selected.

5 RESULTS AND DISCUSSION
5.1 Experimental Results

The results of the experiments are shown in Table 2. For each
algorithm, the table shows the number of wins and losses of the GP
algorithm with respect to LIME, represented respectively by a T and
a |. These wins and losses are evaluated using a Wilcoxon signed
rank test, corrected across each data representation with Hommel’s
method to account for type-1 errors. An alpha value of 0.05 was
used. The two metrics evaluated are the size of the feature set used,
as a simplified functional evaluation of the comprehensibility of
the explanation, and the fidelity of the explanation to the original
prediction according to Equation (2).

5.2 Analysis

While not shown in the result tables for conciseness, the comparison
between the two kernels warrants discussion. In terms of fidelity,
the standard and square root kernels each fully outperform each
other on 3 datasets in the continuous data representation, and the
fidelity on the square root kernel outperforms or equals the standard
kernel on all but two datasets in the discrete data representation.
There is no clear pattern to which kernel selects fewer features
from the data for the GP algorithm, so choice of the better kernel
to use changes depending on the task.

On the continuous data LIME has a better fidelity on each dataset.
However, on five datasets the GP method selects statistically fewer
features than LIME to include in the explanation. These fewer
selected features lead to a more comprehensible model that is easier
for a user to understand. While in some cases a higher fidelity
explanation would be required, it has been shown [6] that in many
cases a less "correct” explanation is often preferred by a user if it is
close to be true and is simpler to reason about. As in all but three
cases the fidelity loss for GP is smaller than 1% of the overall range
of the target value, the explanations with fewer features would in
most cases be preferred by a user.

On the discrete data GP has a better fidelity than LIME on all
datasets except kc2, SPF, and Madelon. In addition to this, the GP
method selects fewer or a similar number features to LIME on all
datasets except Ionosphere, Dermatology, and Madelon. However
on both Ionosphere and Dermatology the fidelity difference is mini-
mal, so the reduced feature set size means that LIME is the stronger
method for these datasets, while on SPF the minimal fidelity differ-
ence means that GP is the stronger explanation method.

In summary, on both the continuous and discrete data represen-
tations the GP method on both kernels produces stronger explana-
tions with fewer selected features than LIME, despite in some cases
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exhibiting marginally worse fidelity. This advantage reduces as the
complexity of the problems increases, however, likely due to the
increasing difficulty of the embedded feature selection.

6 CONCLUSIONS

In this paper we have introduced a new method that utilises GP
to produce high fidelity explanations for predictions made by ma-
chine learning models. Our experiments have demonstrated that
these explanations achieve similar performance to state-of-the-art
methodologies for local explanations while being highly compre-
hensible due to utilising significantly fewer features from the data.
Future work will focus on the capability of GP to produce a
diverse set of explanations, allowing different explanations to be
provided to different users based on their own inherent biases and
experiences. It is known that a user will be much more likely to
accept an explanation if it takes these into consideration, so an
optimal explanation model should do so. Our prior work [1] has
shown that population-based algorithms are a strong contender
to produce sets of counterfactual explanations, so this idea will be
expanded into this work through niching GP algorithms.
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