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Abstract—Manifold learning techniques play a pivotal role
in machine learning by revealing lower-dimensional embeddings
within high-dimensional data, thereby enhancing the efficiency,
interpretability, and scalability of data analysis. Despite their util-
ity, current manifold learning methods often lack explicit func-
tional mappings, which are critical for ensuring explainability
in regulated and high-stakes applications. This paper introduces
Genetic Programming for Explainable Manifold Learning (GP-
EMalL), a novel integration of Genetic Programming (GP) and
Explainable Artificial Intelligence (XAI). GP-EMaL leverages
the inherently interpretable, tree-based structures of GP to
generate explicit, functional mappings while directly addressing
complexity challenges through innovative penalties for tree size,
symmetry, and operator selection. By enabling customisable
complexity metrics, GP-EMaL adapts to diverse application
needs, achieving high manifold quality and significantly im-
proved explainability. Comprehensive experiments demonstrate
that GP-EMaL matches or exceeds the performance of existing
approaches, producing simpler and more interpretable models.
This work advances the state of explainable manifold learning,
paving the way for its adoption in domains such as healthcare,
environmental modelling, and financial analysis.

Index Terms—Manifold Learning, Genetic Programming, Di-
mensionality Reduction, Explainable Artificial Intelligence

I. INTRODUCTION

ANY real-world high-dimensional datasets have highly
complex topological structure [1]-[3]. Manifold learn-

ing (MaL) methods, a category of Nonlinear Dimensionality
Reduction (NLDR) techniques, are crucial for transforming
these datasets into reduced embedding spaces, thereby aid-
ing in the comprehension of the data’s intrinsic structure.
Techniques like functional mapping and graph-based methods
facilitate the visualization of these embeddings but often result
in significant data loss [4]. In contrast, non-mapping and
deep learning methods, while mitigating data loss, compromise
interpretability due to their increased complexity. The applica-
tion of complex, unexplainable NLDR methods, especially in
regulated sectors, can have substantial ethical, legal, scientific,
and commercial implications, as outlined in legislation such
as the EU’s General Data Protection Regulation (GDPR) [5].
In high-risk domains such as healthcare, it is essential
for practitioners to understand the features driving model
outcomes [6]-[9]. This necessity underscores the growing
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importance of interpretable NLDR techniques. Genetic Pro-
gramming (GP), an evolutionary computation (EC) method,
evolves symbolic functional mappings represented by syntax
trees. Prior research [10]-[13] has shown that GP-based meth-
ods are effective in creating interpretable models, particularly
when the symbolic trees maintain low complexity. Recent
work has proposed methods specifically for interpretable GP-
NLDR [14], [15]. A recent study [16] further extends the
explainability of GP trees from manifold learning models
by integrating large language models such as ChatGPT to
provide conversational explanations. GP, as a mapping method,
provides an explicit function enabling the reproduction of
embeddings and the implementation of sensitivity analysis.
Techniques like automatic program simplification can further
simplify these functions. Hence, GP is highly effective in sce-
narios where understanding the relative importance of features
is crucial for ethical and legal reasons.

Interpretability in machine learning is a subjective concept
[17], [18]. Precisely defining what makes a model interpretable
is challenging [19], but clear indicators of limited interpretabil-
ity include having large numbers of parameters or excessively
complex operations. By characterising interpretability through
a low-complexity tree structure, we can quantify complex-
ity via a measurable metric, thereby reducing subjectivity.
However, reducing complexity typically introduces a trade-
off, leading to lower-quality embeddings. Existing GP-NLDR
approaches, such as GP-MaL-MO [15], balance embedding
quality and the number of embedding dimensions but do
not explicitly optimise tree complexity. To address this gap,
we propose an explainability-focused approach (GP-EMalL),
explicitly incorporating a tree complexity metric into the
multi-objective optimisation framework alongside embedding
quality, thereby significantly enhancing interpretability.

Major Contributions

o« We introduce GP-EMaL, a Genetic Programming ap-
proach for multi-objective manifold learning, addressing
the challenge of model interpretability by explicitly in-
corporating complexity as an optimization objective.

¢ A novel complexity metric is proposed, integrating struc-
tural, size, and semantic penalties to generate compact,
symmetrical, and interpretable trees.

o We demonstrate GP-EMaL’s ability to achieve a balance
between interpretability and embedding quality, validated
through experiments on diverse datasets.

¢ Open-source code and a web-based application are pro-
vided to enable reproducibility and facilitate adoption in
real-world applications.
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II. BACKGROUND AND RELATED WORK
A. Dimensionality Reduction

Dimensionality reduction, a key technique in machine learn-
ing, aims to reduce the number of features in a dataset
while preserving as much original information as possible.
This process is essential for two main reasons: firstly, it
significantly reduces the computational burden associated with
large datasets; secondly, it helps overcome the “curse of
dimensionality” [20].

Dimensionality reduction methods can be classified into
two broad categories: feature selection [21] and feature ex-
traction/construction [22]. Feature selection (FS) methods in-
volve choosing a subset of relevant features directly from the
dataset, maintaining their original form and interpretability.
Examples of popular feature selection techniques include
Mutual Information-based selection and Recursive Feature
Elimination (RFE). While inherently interpretable due to their
simplicity, feature selection methods are limited in their ability
to capture complex, nonlinear relationships among features.

Feature construction, in contrast, transforms the original
features into a new set of derived features, potentially cap-
turing complex relationships. Such transformations can be
further categorized into mapping and non-mapping methods.
Mapping methods, including Principal Component Analysis
(PCA), produce a reduced feature space via an explicit func-
tional mapping, offering interpretability by combining the
original features. Non-mapping methods like t-SNE [23] and
UMAP [24], however, prioritize data compression and efficient
representation over interpretability, as they do not provide
explicit mappings for reconstructing the original feature space.

GP-based approaches are a distinct category of mapping
methods, leveraging evolutionary processes to construct ex-
plicit, nonlinear functional mappings. GP-NLDR methods can
thus flexibly model complex manifold structures beyond what
is achievable by standard FS techniques, while maintaining in-
terpretability through their explicit tree-based representations.

B. Nonlinear Dimensionality Reduction

NLDR is employed when relationships in a dataset are too
complex to be captured by linear methods alone [23]. Notable
among NLDR techniques are deep neural networks, such as
autoencoders, which consist of an encoder compressing data
into a lower-dimensional space and a decoder reconstructing it
back. This process is assessed using a loss function that mea-
sures the discrepancy between the input and output, enabling
the autoencoder to efficiently map the data while preserving
structural integrity [25].

Another significant category of NLDR methods is graph-
based approaches, such as t-distributed stochastic neighbour
embedding (t-SNE) [26]. These methods create a nearest
neighbour graph to capture the inherent structure of the data.
The graph is then embedded into a lower-dimensional space,
preserving its structural characteristics. t-SNE specifically con-
structs a graph by considering pairwise similarities between
high-dimensional data points and then subsequently optimising
a 2-D or 3-D embedding to align with this graph. This method

is particularly effective in preserving local data structures and
for visualising high-dimensional data [27].

The integration of GP in NLDR was pioneered by the GP
for Manifold Learning (GP-MaL) method [14]. Subsequent
studies such as GP-MalL-MO [15] have continued to build
on the concept, further advancing the research in this field.
GP-Mal-MO applies a multi-objective approach to GP-based
NLDR, balancing between preserving the nearest neighbour
structure in the embedding and minimising the embedding
dimensionality. This paper builds upon these developments to
enhance the explainability of GP-based NLDR models.

C. GP and Evolutionary Multi-Objective Optimisation

GP is an evolutionary computation technique that evolves
programs, typically represented as tree structures, to solve
problems or model data [28]. GP is particularly notable for
its ability to evolve interpretable models, making it a valuable
tool in domains where understanding the model’s decision-
making process is crucial [29], [30]. In manifold learning, GP
has been effectively used to evolve mappings that reduce data
dimensionality while preserving its intrinsic structure [14].

Evolutionary Multi-Objective Optimisation (EMO) extends
the EC paradigm to handle multiple, often conflicting, ob-
jectives. EMO algorithms evolve a population of solutions,
aiming to find a set of Pareto-optimal solutions that represent
the best possible trade-offs between the objectives [31]. This
approach is particularly beneficial when dealing with complex
problems where optimising a single objective could lead to
sub-optimal or undesirable solutions.

A critical development in the EMO field was the MOEA/D
(Multi-Objective Evolutionary Algorithm based on Decompo-
sition) method [32]. MOEA/D decomposes a multi-objective
optimisation problem into a number of scalar optimisation
sub-problems and optimises them simultaneously. Each sub-
problem focuses on a specific region of the Pareto front,
enabling MOEA/D to effectively explore and exploit the search
space. This method has gained popularity due to its efficiency
and effectiveness, especially in problems with a complex
Pareto front landscape.

In the context of GP for manifold learning, MOEA/D
offers a robust framework for balancing the trade-offs between
manifold quality, embedding complexity, and interpretability.
By applying MOEA/D, GP is expected to evolve a diverse
set of Pareto-optimal solutions, each representing a different
balance between these objectives. This flexibility allows users
to select a solution that best fits their specific needs, whether
prioritising interpretability for a domain expert’s analysis or
optimising performance for automated tasks.

D. Tree Complexity

In GP, the complexity of the syntax trees is a crucial
factor affecting both the performance and interpretability of the
generated models. One method for calculating tree complexity
starts at the root node and progresses recursively [33]. This
method, outlined in Table I, aggregates the complexity of each
node based on specific rules, facilitating efficient (O(t) for a
tree containing ¢ nodes) and consistent calculations (e.g. as
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TABLE I: Complexity Values [33]

Complexity(n) Symbol of node(n)

1 constant
2 variable
> cee, Complexity(c) +,—
[I.c., Complexity(c) + 1 x,/
Complexity(n1)? square

Complexity(ni)3
9Complexity (1)

square root
sin, cos, tan, exp, log

where c is a child of node n, and ny is the first child of n.

opposed to time-based complexity measures [34]). While this
approach generates simpler trees, it has its limitations: it does
not constrain the shape of the embedding tree, potentially re-
sulting in asymmetrical and visually confusing/uninterpretable
structures. Asymmetrical trees are harder to understand than
the equivalent symmetrical tree with the same number of
nodes, as they contain more layers of nested functions. Ad-
ditionally, while this existing approach penalises complex
operations (function nodes), it does not explicitly minimise
the tree size, often leading to large trees using many simpler
operators. The fixed function set also does not consider the
varying interpretability of functions across different contexts.

E. Tree Complexity Metrics

Various tree complexity metrics have been proposed in
the literature, falling into two main categories: structural
complexity and functional (semantic) complexity metrics [35]-
[38]. Structural complexity assesses the tree at a node level,
while functional complexity is based on the complexity of the
tree’s overall behaviour.

Research on structural complexity has explored factors like
penalizing large trees through parsimony pressure [39] and
reducing nested functions [40]. However, the integration of
other metrics, such as assessing the asymmetry of trees, has
been less explored. Our work aims to fill this gap.

In terms of functional complexity, the prevalence of many
nonlinear operators, especially when nested, has often been
identified as a factor of complexity [33]. The use of Tikhonov
regularization to apply a global smoothing function to the tree
has also been studied [41]. This method penalizes the function
based on the norm of its higher-order derivatives, resulting in
a smoother function.

The distinction between structural and functional complex-
ity is not absolute, as these aspects can overlap. For example,
a tree represented by a nested function like sin(cos(exp(z)))
may be considered both functionally complex (due to its
nonlinear nature) and structurally complex (due to its nested
structure). Thus, these complexity measures should be viewed
as complementary heuristics rather than distinct categories. For
measuring explainability, structural complexity approaches are
more appropriate as they directly consider the complexity of
the tree structure that the user will be trying to interpret.

III. PROPOSED METHOD: GP-EMAL

In our proposed method, GP-EMal, we build upon the
framework established by GP-MaL-MO [15], targeting a key

limitation: the tendency towards complex tree structures which
can impede interpretability. Our GP-EMaL. approach intro-
duces a novel complexity metric for expression trees, replacing
the manifold dimensionality objective in GP-MaL-MO that
focuses on minimizing the complexity while retaining the
essential manifold quality cost metric based on neighbourhood
ordering [14], [15]. This change aims to enhance the tree
interpretability without compromising the effectiveness of the
manifold learning process. The core algorithm for multi-
objective optimisation is similar to GP-MaL-MO, as illustrated
in Fig. 1, which outlines the architecture of GP-EMaL.

A. GP Design

GP-EMaL is a filter-based approach that evaluates func-
tional mappings independent of specific supervised tasks. This
significantly reduces computational cost compared to wrapper
methods, making GP-EMaL. more scalable to larger datasets.

The principle of GP-EMaL’s dimensionality reduction lies
in evolving symbolic functional mappings that optimize em-
bedding quality and tree complexity simultaneously. Each GP
individual consists of multiple trees, where each tree maps one
dimension of the embedding space. These trees are constructed
from functional building blocks, including arithmetic oper-
ations (e.g. addition, multiplication), mathematical functions
(e.g. sine, exponential), and terminals such as input features
and constants. For instance, a tree could represent the mapping
y = (f1 + f2) X sin(£3), where £1, £2, and £3 are
input features, and +, X, and sin are functional nodes.

GP-EMaL optimises two conflicting objectives: (1) preserv-
ing neighbourhood relationships in the embedding space and
(2) minimizing tree complexity. Complexity is measured using
metrics such as the number of nodes, symmetry of tree struc-
tures, and use of expensive operators. The MOEA/D algorithm
is used to balance these objectives, producing a Pareto-optimal
front of solutions that represent trade-offs between embedding
quality and interpretability. The optimization process involves:
(1) initializing a diverse population of GP individuals with ran-
dom tree structures; (2) evaluating individuals using the multi-
objective fitness function (described in Section III-D); and (3)
applying genetic programming operators such as crossover and
mutation to evolve the population over generations.

The multi-tree structure in GP-EMaL allows each individual
to contain several trees, initialized with a number of trees
randomly chosen within the range [2,m <+ 2], where m is the
number of features in the dataset. Evolutionary operators in-
clude a specialized Add/Remove Tree mutation, which enables
individuals to dynamically adjust their tree count, balancing
manifold quality and complexity. For example, a new tree
can be added to improve embedding quality or an existing
tree can be removed to simplify the individual. A Standard
mutation operator modifies a random subtree within any tree,
while crossover swaps subtrees between two individuals. This
flexibility allows GP-EMaL to adaptively evolve interpretable
solutions tailored to different datasets.

B. Complexity Metric

GP-EMaL introduces an enhanced complexity metric that
explicitly targets tree interpretability while maintaining high
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Fig. 1: GP-EMaL Architecture

TABLE II: Comparison of GP-EMaL. and GP-MaL-MO

TABLE III: Symbols and Definitions in the Complexity Metric

quality trade-offs.

Innovation Introduces penalties for asymmetry,
nested operations, and configurable op-
erator Costs.

Adaptability Uses user-defined parameters for tuning

interpretability in specific applications.

manifold quality. This metric significantly expands on the
simpler dimensionality-based approach used in GP-MaL-MO.
To better illustrate the differences, a comparison of GP-EMaL
and GP-MaL-MO is presented in Table II.

The complexity metric in GP-EMaL is a unified measure
that evaluates tree structures by integrating four interdependent
factors: symmetry, size, operator usage, and semantic inter-
pretability. These components are designed to work in tandem
to ensure a balance between embedding quality and inter-
pretability. By incorporating penalties for structural asymmetry
and large size, along with operator-specific costs, GP-EMaL
evolves trees that are inherently easier to interpret compared
to the baseline method.

For example, the parameterized function set enables
domain-specific adjustments, where simpler operators like
addition and subtraction may have lower costs in general-
use applications, while complex operators like trigonometric
or exponential functions might be penalized unless required
for specific fields like physics. These operator preferences
help maintain interpretability in diverse domains, aligning tree
structures with the expectations and expertise of end-users.

To further illustrate the methodology, we detail the key
components of the complexity metric in the following sub-
subsections. These include penalties for structural asymmetry,
scaling penalties for tree size, operator-specific costs, and their
integration into the overall metric.

The tree complexity metric, F(T'), combines three main
components: symmetry balancing, tree size scaling, and oper-
ator costs. These components are described below, with each

Aspect GP-EMaL Symbol Definition
Complexity Objective Explicitly optimizes for tree complexity A; Asymmetry penalty at node %
using a parameterized metric with sym- Sizey eft Size of the left subtree at node ¢
metry and size penalties. Sizegight Size of the right subtree at node ¢
Manifold Quality Objective | Retains the measure from GP-MaL-MO, A; Difference between Sizej e, and Sizegjont
ensuring high-quality embeddings. o Ratio of tree size to maximum tree size
Operator Focus Encourages simpler operators near the St Scaling term for tree size
root, improving interpretability. L;, R; Complexities of the left and right subtrees at node ¢
Multi-Objective Design Focuses on complexity and embedding O(t) Asymptotic complexity based on subtree size ¢

term linked to its corresponding symbol in Table III.

1) Symmetry Balancing Term: The symmetry balancing
term A; is applied at each node to promote balanced tree
structures. It penalises asymmetry between the left and right
subtrees, defined by their sizes Sizere; and Sizegign.. The
penalty is calculated as:

A; =22 1, A; = Sizeren — Sizegign- (1)

This term ensures that balance is considered at all levels of
the tree, leading to visually and structurally simpler models.

2) Scaling Term: Recognising the challenges posed by
larger trees to interpretability, GP-EMaL incorporates a scaling
term St to penalise excessive tree sizes. The scaling term is
governed by the parameter «, representing the size of tree T’
relative to a predefined maximum size Sizeyx. The penalty is
defined as:

1, ifa<py t
o —

St = = —.
Sizemax

2

2c, if > p,

This term increases the penalty as the tree size exceeds the
threshold .

Parameters such as maximum tree size play a crucial role
in balancing the trade-off between embedding quality and
interpretability in GP-EMaL. This parameter directly affects
the complexity of operation trees, which in turn influences
the conflicting objectives of embedding accuracy and model
simplicity. While systematic sensitivity analysis is beyond the
scope of this study, the parameter settings were informed by
prior work in GP-based NLDR and other GP literature. More-
over, the choice of maximum tree size is often application-
dependent, as users may prioritize either higher interpretability
or greater embedding fidelity depending on their specific
requirements.
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TABLE IV: Summary of Function Cost Sets

Cost Operator Complexity Cost Scaling
sum n; € (+, —) L; + R; O(t)
prod n; € (x,+) max(L; X R;, L;, R;) o(t?)
exp i € (fi, f) 2(LitRs) 02"

3) Tree Complexity Term: The GP-EMaL approach intro-
duces enhanced flexibility in measuring tree complexity by
introducing a parameterisable function set. This set allows
users to define both the tree operators and their respective
contributions to overall tree complexity. The cost assigned to
each operator is proportional to the height of the respective
subtree, with the scaling of these costs categorised as linear,
quadratic, or exponential.

For example, consider a function set comprising three
basic arithmetic operators and a nonlinear operator:
[+, —, X, sigmoid], paired with a function cost set
[sum, sum, prod, exp]. This configuration results in a
higher prevalence of the simpler arithmetic operators [+, —]
within the evolved trees due to their lower cost. The
multiplication operator x would appear less frequently,
typically higher in the tree, while the nonlinear operator
stgmoid would be least common, generally positioned near
the top of the tree, directly affecting the features.

This methodological approach in GP-EMaL allows for
nuanced control over the complexity of the generated trees.
It enables the specification of not only which operators are
present but also their preferred locations within the tree
structure, thereby influencing both the functional complexity
and the interpretability of the trees.

Table IV summarises the settings for these function cost
sets. f1,.., fn represent the set of non-arithmetic or “spe-
cial” operations (e.g. trigonometric functions). O indicates the
asymptotic scaling complexity based on the number of nodes
in the left and right child subtrees.

The overall tree complexity function, denoted as F(T), is
defined as:

F(T)=8rx | Y (Li+Ri+A)
ni,€(+,—)
+ ) (max(Ly x Ry, Ly, Ry) + 4;) 3)

n;€(X,+)

DY

nEE€(f1,eefn)

(Q(Lk"rRk) + Ak)

where A; refers to the asymmetry penalty at each node as
defined in Eq. (1), and S; is the scaling term for tree size as

per Eq. (2).

C. Function and terminal sets

Our default function set contains a range of basic and
more complex operators. It includes the arithmetic functions
(+,—,x, protected =), conditional functions (max and min),

and nonlinear operators (absolute value, ReL.U and the Sig-
moid function). The terminal set (Ieaf nodes) contains each of
the features of the dataset.

D. Objective functions

As a multi-objective GP-MaL. approach, our method has
two objectives: one that minimises the difference between the
input feature space and the embedding space; and a second
that minimises the complexity of the trees used to transform
the input space into the embedding space.

As our focus in this work is on reducing the complexity of
the learned trees, we utilise the same first objective (Cost) as
in GP-MalL-MO, which has shown to be an effective measure:

Cost(I, X) = % 3 (1- Coer(N, N))

“4)
reX

for GP individual I and dataset X with data point x € X.
corr represents Spearman’s rank correlation coefficient and
| X| is the number of data points. N and N’ is the ordering of
I’s neighbours in the high-dimensional and embedded spaces,
respectively. The 2 in the denominator is a scaling factor
that constrains the complexity function to [0, 1]. This equation
penalises GP individuals where the embedding has a different
neighbourhood structure from the input dataset, where a value
of 0 represents a perfect preservation of structure, and 1
represents the worst possible result (a complete reversal of
neighbour orderings).

Whereas GP-MalL.-MO simply uses embedding dimension-
ality (number of trees) as the complexity measure, our pro-
posed GP-EMaL uses the new complexity metric introduced
in Section III-B. Given that a GP-EMaL individual contains
multiple trees (embedding dimensions), we sum across the tree
complexity metric (Eq. (3)) to get the overall complexity of a
given GP individual (1):

Complexity(I) = Z F(T) ®)

Tel

where T is a tree in [.

These two objective functions are generally conflicting, as
less complex trees represent functions with fewer degrees of
freedom and, therefore, cannot retain the neighbourhood struc-
ture of the input space as accurately as more complex trees,
leading to a higher cost. By using the MOEA/D algorithm to
evolve GP individuals according to these two objectives, we
are able to produce a population of GP individuals to obtain an
approximate Pareto front, where individuals represent different
(non-dominated) tradeoffs between embedding quality (Cost)
and tree complexity.

E. Implementation

The GP-EMaL algorithm is built using Python with the code
publicly available!. A Streamlit web-based application is also
accessible for ease of use® depicted in Fig. 2.

Uhttps://github.com/cravies/GP-EMaL
Zhttps://gp-emal.streamlit.app/
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Fig. 2: Streamlit Application Interface.

IV. EXPERIMENT DESIGN

We evaluated our new GP-EMaL approach using the fol-
lowing methodology, divided into three distinct analyses:
Predictive Performance, Complexity Summary Statistics, and
Visual Comparisons.

A. Predictive Performance

To assess the effectiveness of GP-EMalL, we adopted a
widely used approach for comparing manifold learning (MaL)
algorithms, focusing on the classification accuracy achievable
in the embedded spaces they produce. Classification accuracy
serves as a practical and unbiased proxy for evaluating the
preservation of data structures within embeddings.

For this evaluation, we trained KNN and RF classifiers
on embeddings generated by both the proposed GP-EMaL
method and the baseline GP-MaL-MO method. Ten-fold cross-
validation was employed to ensure robustness, using random
forests (RFs) with 100 trees and k-nearest neighbors (KNN).
RF was chosen for its stability and general reliability, while
KNN was included due to its dependence on high-quality
embeddings for accurate distance-based predictions.

The evaluation used seven datasets (listed in Table V), pri-
marily from the UCI repository [42], along with the COIL20
dataset [43]. These datasets were selected to represent a
diverse range of features, instances, and class distributions.
For each dataset, classification accuracy was recorded over 30
runs, using the parameter settings outlined in Table VI. These
settings were chosen based on established practices in the GP
literature [14], [15], ensuring robust performance. Tree depths,
population size, generations, and mutation/crossover probabil-
ities were informed by preliminary tests to balance compu-
tational efficiency and embedding quality, while complexity
penalties directly align with our interpretability objectives.

The nature of our research and methodology introduces sig-
nificant challenges in applying traditional statistical techniques
to validate the findings and compare GP-EMal with GP-MaL-
MO. Developing a unified accuracy measure that appropriately

TABLE V: Classification Datasets for Evaluation

Dataset Features  Instances  Classes

Wine 13 178 3
Dermatology 34 358 6
Image Segmentation 19 2310 7
MFEAT 649 2000 10
MNIST 784 2000 2
COIL20 1024 1440 20
Isolet 617 1560 26

TABLE VI: GP-EMaL Parameter Settings

Parameter Setting

Generations 1000

Population Size 100

“Standard” Mutation 15%

Add/Remove Tree Mutation 15%

Crossover 70%

Max. No. Trees max(2, [#features+2])
Min. Tree Depth 2

Max. Tree Depth (Sizeprqe) 14

Decomposition Tchebycheff

Ramped Half-and-half
+ — X<+ ReLu sigmoid max min abs
sum sum prod prod exp exp exp exp exp

Pop. Initialisation
Function Set
Cost Set

accounts for complexity — such as tree size, use of expensive
operators, or feature utilisation — involves subjective trade-
offs that vary depending on the application context.

Moreover, GP-MaLL-MO was not explicitly optimised with
respect to complexity metrics, whereas GP-EMaL incorporates
these as primary optimisation objectives. This fundamental
difference means that direct statistical comparisons would
inherently favour GP-EMaL, potentially misrepresenting the
strengths of GP-MaL-MO. Additionally, the two methods gen-
erate differing numbers of individuals, leading to unbalanced
datasets that violate key assumptions of many statistical tests.

Instead, we adopt a qualitative approach supported by
detailed visualizations (Figs. 10 to 16) and summary statistics
(Fig. 17). This approach highlights the nuanced trade-offs
between embedding quality and complexity, which are integral
to multi-objective optimization.

We also acknowledge the broader need in future research
for standardized methodologies and statistical tools to analyze
multi-objective methods like these, particularly when balanc-
ing conflicting objectives.

B. Complexity Summary Statistics

To complement the predictive performance analysis, we
gathered summary statistics across all datasets. For both GP-
EMaL and GP-MaL-MO, we measured the average number
of nodes, the number of unique features used, and the com-
plexity of the nodes chosen. These statistics offer a high-level
comparison of the two methods in terms of their complexity
and explainability.

C. Visual Comparisons

Finally, to directly contrast the explainability of the two ap-
proaches, we compared typical example individuals generated
by GP-MaL-MO and GP-EMaL on the COIL20 dataset. As
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Fig. 3: Front and Classif. Performance on Wine

the dataset with the highest number of features in our tests,
COIL20 represents a particularly challenging case for produc-
ing explainable non-linear dimensionality reduction (NLDR)
models.

V. RESULTS
A. Predictive Performance

We begin by exploring the trade-off between complexity
and classification accuracy in the individuals produced by GP-
EMalL in Section V-Al.

1) GP-EMaL Complexity vs. Classification Accuracy: Fig-
ures 3 to 9 show the results for GP-EMaL using the seven
datasets, in order of roughly increasing dataset complexity. For
each dataset, we show two visualisations. The first depicts the
approximated Pareto front. The cost (reduction in manifold
quality) is measured on the y-axis, with the tree complexity
metric (in log scale) shown on the x-axis. As both cost and
complexity should be minimised, points closer to the bottom-
left are of higher quality. The second plot shows the Classif.
Performances of both KNN (lighter blue) and RF (darker blue)
predictors using the new embeddings. A smoothing spline is
run on the results to average and smooth the curves over
the 30 runs. As classification accuracy should be maximised,
points closer to the top-left of the second set of plots are
better-performing. We also include a dotted orange horizontal
line, which is the performance of the RF classifier when
using all features. This line represents a benchmark of what a
good classifier could achieve on the source high-dimensional
dataset.

The Wine dataset (Fig. 3) is the least complex of our
tested datasets, with only 13 features and 178 instances. The
approximated Pareto front shows that GP individuals with
very low complexity (=30 as measured by Eq. (4)) are able
to achieve a very low cost, strongly retaining the structure
of the original high-dimensional space by using only simple
operators. A similar result is seen in the classification plots,
where both the KNN and Random Forest classifiers perform
well with above 90% accuracy using the embeddings produced
by a simple GP individual.

The Dermatology dataset (Fig. 4) exhibits similar behaviour
to that of Wine but requires a slightly more complex solution
(=75) to generate an embedding with a cost near zero. Both
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Fig. 4: Front and Classif. Performance on Dermatology
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Fig. 5: Front and Classif. Performance on Image Segmentation

RF and KNN achieve in excess of 90% classification accuracy,
matching the baseline performance of all features.

The Image Segmentation results (Fig. 5) resemble those of
Wine, given the similar number of features in both datasets.
This is the first set of results where there is a substantial per-
formance difference between RF and KNN. The RF classifer
achieves over 95% accuracy with a GP complexity of only
~30, whereas the KNN classifier is slightly worse across all
complexities.

The MFEAT and MNIST datasets show comparable patterns
in their results (Figs. 6 and 7). They show convergence to low-
cost solutions at a slightly higher complexity (/100) than the
simpler datasets, achieving over 90% classification accuracy
on RF and KNN. These are the first datasets where there is a
(very small) gap in performance between RF using all features
and RF using the embedding produced by even the most
complex GP trees. This is an inherent trade-off: on sufficiently
complex problems, a more complex (less explainable) model
is needed to achieve the best performance. However, as we
show in the rest of this paper, a much simpler model often
can still achieve very high performance — a trade-off that is
easily preferable in many applications.

The most complex datasets, COIL20 and Isolet (Figs. 8 to 9)
also show an asymptotic pattern, where cost approaches zero at
a complexity of ~75. While the RF classification performance
on COIL20 is near the baseline, on Isolet, there is a gap of
around 10%, even at the highest complexities. If very high
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Fig. 6: Front and Classif. Performance on the MFEAT dataset
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Fig. 7: Front and Classif. Performance on MNIST

performance is crucial on Isolet, the original GP-MaL-MO
approach may be required (as discussed later) instead.

2) Comparing GP-EMaL to GP-MalL-MO: To compare
GP-EMaL to GP-MalL-MO as fairly as possible, we evaluate
the performance of each method along three different signals
of complexity/interpretability. These are:

1) The total number of nodes used in the GP individual,
which gives a “raw” measure of tree complexity;

2) The total number of exp cost operators used in the
GP individual, which measures how many of the most
difficult-to-understand functions are used; and

3) The number of unique features used, i.e. the number of
dimensions in the high-dimensional input data that were
used to construct the embedding. Using fewer unique
features will make a GP individual easier to understand,
as it requires less interpretation of different aspects of
the data domain.

We plot each of these measures against the classification
accuracy for all individuals in the fronts evolved by both GP-
EMaL and GP-MaL-MO across all our runs. We use only RF
for computing classification accuracy, as it always outperforms
KNN and hence provides a more accurate measure of embed-
ding quality. The plots for each of the datasets are shown in
Figs. 10 to 16, where each orange < symbol shows one GP
individual evolved by GP-EMaL and each o symbol shows one
GP individual evolved by GP-MaL-MO. We also include an
overlay within each plot to show a closer perspective of the

Pareto Front Classification Performance

o

1.4 —— GP-EMaL
0.9
1.2
>
L 08
©
5
10
O o7
©
s
t)l 0.8 = 0.6
o ©
o O
?‘ﬁ 0.5
0.6 a
Kol
O 04
c
0.4 ©
(7
s 03
0.2 All features (RF test)
021 KNN (GP-EMaL test)
RF (GP-EMal test) —
0.0 0.1
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Complexity (GP-EMal) Complexity

Fig. 8: Front and Classif. Performance on COIL20
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Fig. 9: Front and Classif. Performance on Isolet

boundary between the GP-EMal. and GP-MaL-MO regions.
For all of these plots, points closer to the top-left of the plot
are of higher quality (having higher classification accuracy at
a lower complexity). As with our earlier results, we include a
dotted horizontal line to represent the “baseline” performance,
which uses the same RF classifier with all the original features
of the dataset.

Across nearly all of the datasets, the proposed GP-EMaL
method is able to achieve similar performance to the existing
GP-MaL-MO method despite having smaller trees with fewer
complex operators and using fewer unique features. This is
a clear testament to the complexity function proposed in this
work — by using a more sophisticated measure of complexity
(compared to just the number of trees in GP-MalL-MO) as
our second objective, we can produce explainable trees that
effectively preserve data structure in the embedded space.

This improvement in GP-EMaL is especially clear in the
first three datasets (Figs. 10 to 12). On these, GP-EMaL is
able to retain sufficient manifold structure to reach the baseline
accuracy while clearly using much less complex trees than
GP-MaL-MO; GP-EMalL effectively dominates GP-MaL.-MO
across the three different complexity measures. GP-EMaL is
consistently less complex at high levels of accuracy; on the
Image Segmentation dataset, for example, GP-MaL-MO has
accuracies as low as 70%, despite using all features in the
dataset and using trees with many more nodes. Finally, GP-
EMaL provides a much better approximation of the low-
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Fig. 13: Performance Comparisons using the MFEAT dataset
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Fig. 16: Performance Comparisons using the Isolet dataset

complexity part of the Pareto front: it produces extremely
simple individuals (e.g. using only a few nodes and/or one
or two features) that often can achieve over 80% accuracy —
a trade-off that may be desirable on some problem domains.

On the MFEAT dataset (Fig. 13), we observe that GP-MaL-
MO has a small but consistent decrease in RF accuracy for
less-complex GP individuals. At similar levels of complexity,
GP-EMaL outperforms GP-MaL-MO. For example, GP-MaL-
MO achieves around 93% accuracy for a GP individual with
100 nodes, whereas GP-EMal. achieves close to the baseline
accuracy (around 97%) with as few as 40 nodes. Similar
patterns are seen for the number of exponential operators and
unique features. Indeed, GP-EMaL can consistently reach the
baseline accuracy when using only 25 unique features, whereas

GP-MaL-MO has significant variance in accuracy.

As the complexity of our datasets further increases, a small
gap in classification accuracy between the two methods begins
to emerge. On MNIST (Fig. 14), GP-EMaL is very slightly
(< 1%) below the baseline accuracy, whereas GP-MaL-MO
is able to reach baseline performance. There is, however, a
marked complexity gap between the two methods: GP-EMaL
is nearly an order of magnitude less complex than GP-MaL-
MO (e.g. 100 vs 500 nodes) despite the only 1% difference in
performance. A very similar result is observed on the COIL20
dataset (Fig. 15), albeit with a smaller gap in complexity and
performance between the most-complex GP-EMaL individual
and the least-complex GP-MaL-MO individual.

On the most complex dataset, Isolet (Fig. 16), GP-MaL-
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TABLE VII: Summary Statistics

Statistic

# O(2™) nodes
# O(n?) nodes
# O(n) nodes
# O(1) nodes
# nodes

# unique feat

Description

total number of O(2™) cost operators

total number of O(n?) cost operators

total number of O(n) cost operators

total number of O(1) cost operators (feature nodes)
total number of nodes

number of unique feature nodes

MO is clearly able to attain higher classification accuracy than
GP-EMaL. — but not without using more complex GP trees.
GP-MaL-MO requires very complex trees (~=1000 nodes,
~100 complex operators, ~300 unique features) to achieve a
baseline level of accuracy. It is interesting to note that together,
GP-EMaL and GP-MalL-MO almost form a combined front,
with neither method having individuals that Pareto-dominate
the other. On large, complex datasets such as Isolet, it may be
desirable to run both GP-EMaL and GP-MaL-MO and produce
a combined front to provide the user with a comprehensive set
of trade-offs from very simple to very complex models.

In conclusion, the results demonstrate a clear trade-off
between complexity and predictive accuracy across various
datasets. This trade-off is more evident in datasets with
higher complexity. For most datasets, GP-EMaL offers an
improvement over GP-MalLL-MO by producing substantially
more explainable GP individuals without compromising on
predictive accuracy. For the more complex datasets, GP-MaL-
MO may have an edge in accuracy, but GP-EMaL stands
out as a robust alternative, especially when the focus is on
interpretability, with only a minimal performance decrease.

B. Summary Statistics

To understand the overall complexity of the two methods
across all the datasets, we calculated several summary statistics
for both GP-MalLL-MO and GP-EMaL. These statistics are
described in Table VII.

Fig. 17 shows the summary statistics in the form of his-
tograms for each of the two GP methods. By looking at the
x-axis values, we can see that GP-EMaL produces much less
complex trees than GP-MaL-MO. Indeed, the maximum value
for GP-EMaL on each of the graphs is actually below the
median value on the corresponding graph for GP-MaL-MO.
The median and maximum number of nodes used by GP-
EMaL are around 100x smaller than that of GP-MaL-MO.

C. Visual Comparisons

Finally, we present a typical individual evolved by GP-
EMaL (Fig. 18) and GP-MaL-MO (Fig. 19) on the complex
COIL20 dataset’. We chose the individual with median clas-
sification accuracy across all runs to represent the ‘“elbow”
of the approximated Pareto Front. While GP-EMaL performs
slightly worse than GP-MaL-MO on classification accuracy
(mirroring our earlier results), the individual itself is markedly
less complex: the biggest tree produced by GP-EMaL has

3Further sample tree outputs are available at github.com/cravies/GP-EMaL
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Fig. 17: Summary statistics for the two GP methods across all
datasets. The red line represents the median result.

seven nodes, compared to 31 in GP-MaL-MO. The deepest tree
in GP-EMaL is only a depth of four; GP-MaL-MO produces
a tree with a depth of ten.

While GP-MaL-MO may be technically interpretable to a
domain expert, it is clearly very difficult to explain compared
to the individuals produced by GP-EMaL. The trees evolved
by GP-EMaL consistently exhibit simpler and more balanced
structures due to the explicit optimization of tree complexity.
Complex operators such as sigmoid and ReLU predominantly
appear at the leaf nodes, while simpler, more intuitive op-
erators like subtraction and multiplication occur nearer the
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Fig. 18: A typical GP-EMaL individual containing 20 trees on
COIL20, with 94.2% test accuracy and a complexity of 78.
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Fig. 19: A typical GP-MaL-MO individual containing 29 trees
on COIL20, with 99.1% test accuracy.

root. This hierarchical organization naturally aligns with how
domain experts tend to interpret functional mappings.

These observed structural advantages directly reflect GP-
EMaL’s algorithmic design choices, particularly its novel
complexity metric incorporating penalties for tree size, asym-
metry, and operator complexity. By explicitly optimizing tree
complexity alongside manifold preservation, GP-EMaL con-
sistently generates models that are inherently easier for domain
experts to interpret without significantly sacrificing embedding

quality. However, interpretability ultimately remains domain-
and user-dependent; future work should involve domain ex-
perts to empirically validate and refine these interpretability
gains in practical scenarios.

VI. CONCLUSIONS

This study’s exploration into GP-EMaL represents a signifi-
cant stride in the realm of interpretable manifold learning using
genetic programming. GP-EMaL distinguishes itself by its
emphasis on interpretability, a critical aspect often overlooked
in traditional approaches. Notably, while GP-EMal. demon-
strates a slight decrease in performance on higher-complexity
datasets, this reduction is generally modest, typically under
5%. This is a small price to pay considering the complexity
of previous methods, which were so intricate that they were
impractical for tasks where interpretability is paramount.

Furthermore, our findings underline the delicate balance
between interpretability and performance in machine learning
models. The open-source availability of GP-EMaL is intended
to foster more research and practical applications in this field.
Future work could validate interpretability with user testing
and further explore methods to enhance embedding quality.
Furthermore, expanding GP-EMaL to optimise three objectives
— neighbourhood structure preservation, embedding complex-
ity, and dimensionality — simultaneously would offer a more
nuanced approach, allowing for solutions tailored to specific
requirements and contexts.
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