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Abstract—Recent advancements in vision transformers and
self-supervised learning are expanding the capabilities of com-
puter vision models. This study explores the application of a
DINOv2-based unsupervised approach for the re-identification
of kākā, a forest parrot endemic to New Zealand. We measure
the performance of our vision transformer against a canonical
SIFT-based method to establish its utility in accurately iden-
tifying individual birds. Using video recordings of wild birds
captured at purpose-built feeders over three distinct periods,
we present evaluations of our models using extracted images.
The results demonstrate that our DINOv2-based model achieves
high accuracy, outperforming our SIFT-based approach. Deep
learning models are often considered unexplainable. We offer a
window into our model utilising patch embeddings to highlight
key features of the kākā. These findings suggest that a vision
transformer-based method is an effective non-invasive tool for
improving conservation efforts to monitor growing populations
of threatened parrots such as the kākā.

Index Terms—Computer Vision, Image Processing, Feature
Matching, Vision Transformers, Wildlife Re-Identification,

I. INTRODUCTION

In wildlife conservation, re-identifying individuals within a
species is essential for monitoring population health and de-
veloping effective management strategies [1]. Parrots are some
of the most threatened species on Earth [2] and pose a unique
challenge due to the difficulty in distinguishing individuals
with the human eye [3], [4]. Traditional approaches for bird
monitoring, such as leg banding, are labour-intensive and can
be impractical for monitoring populations where individuals
are difficult to capture and highly mobile [5], [6], as is the
case for urban kākā (Nestor meridionalis) in Wellington, New
Zealand. Recent advances in computer vision offer a promising
alternative, providing a non-invasive automated solution for
individual bird recognition [7]–[10]. Kākā have distinctive
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beak and facial features [11], making machine learning an
attractive solution for automated individual recognition.

This study aims to evaluate the effectiveness of using an
advanced deep learning vision transformer model, DINOv2
(self-DIstillation with NO labels) [12], for identifying individ-
ual kākā and to compare its performance with that of a more
canonical handcrafted method such as SIFT (Scale-Invariant
Feature Transform) [13]. This comparative analysis evaluates
the practicality and potential of using cutting-edge vision
transformer models as viable alternatives to traditional meth-
ods. Although deep learning models can be considered compu-
tationally expensive, knowledge distillation such as that used
in DINOv2 helps reduce their complexity, giving a smaller,
more efficient model with minimal loss in performance. Our
proposed model presents an unsupervised learning approach,
a powerful technique for re-identifying individuals without
requiring labelled data. This unsupervised method allows our
model to extract features through patterns and structures within
the data without being constrained to a labelled dataset. This
approach allows us to successfully identify new individuals
within the population.

Deep learning models, while highly effective at pattern
recognition, are often considered unexplainable “black boxes”
[14]. Our work endeavours to draw out explanations to
interpret the detected features hidden within the generated
image embeddings. Our findings will contribute to under-
standing how advanced machine learning can enhance wildlife
monitoring and illustrate how providing explanations of the
model decisions can aid in understanding how to distinguish
individual differences within a species.

The major contributions of our study are as follows:
• We present an AI model based on the state-of-the-art

DINOv2 deep learning vision transformer to re-identify
kākā individuals with high accuracy.

• We demonstrate the application of this model on images
and video clips collected from a dedicated feeder station.



• We showcase how the model detects important features
of the bird across different images, providing ecological
insights into the key characteristics distinguishing indi-
viduals and further highlighting the potential to apply this
technology to other endangered species.

II. RELATED WORK

Traditional computer vision approaches extract important
features from image pixels using species-specific algorithms,
labelled datasets, and supervised machine learning [15]. Indi-
vidual polar bears in Canada are identified based on whisker
spot patterns [16], African elephants by their ear patterns
[17], New Zealand common dolphins using the pigmentation
patterns on their dorsal fins [18], and Cheetahs in Tanzania
through their unique spot patterns [19]. Facial recognition has
been used on lemurs in Madagascar [6], Rhesus Macaques
in the UK [20], and Bears across North America, Europe,
and Asia [21]. However, these models are not transferable
to other animals as they rely heavily on species-specific
morphological features. Our goal is to build a model that
identifies kākā individuals and is easily adaptable to other
parrots and potentially other species.

Local descriptor-based models such as SIFT (Scale-
Invariant Feature Transform), SURF (Speeded-Up Robust
Features), and ORB (Oriented FAST and Rotated BRIEF)
extract keypoints and descriptors from images for matching.
These approaches handle variations in scale and rotation well.
HotSpotter [22] presents a model based on such keypoints
and descriptors which is not species-specific, illustrating its
performance on zebras, giraffes, leopards, and lionfish. The
algorithm builds on the SIFT/RANSAC approach used in the
Wild-ID system [23]. Keypoint matching has also been used
for distinguishing giant sunfish individuals [24] and in our
previous work re-identifying kākā individuals [11].

Deep learning approaches have emerged for animal re-
identification using object detection models and convolutional
neural networks (CNNs) to improve performance and provide
a more generalised alternative to local descriptor-based meth-
ods. These models are primarily species-specific and use a
supervised learning methodology requiring a labelled dataset
of images to train the models. YOLO (You Only Look Once)
[25] is a state-of-the-art object detection model based on the
CNN architecture. It processes an image in just one pass,
making it a computationally efficient and fast option for object
detection. A fine-tuned YOLO model was developed for gorilla
face detection [26]. However, the researchers in the study
highlighted that labelling the 12765 images of 147 individual
gorillas was both costly and time-consuming. A study on
three small bird species also utilised a CNN-based model,
which was trained on a fully labelled dataset using images
of RFID-tagged birds [27]. Their study noted the challenges
as new, unknown birds joined the population, highlighting key
limitations of supervised learning approaches and the tagging
of animals. Other CNN-based models have been built for
animals such as Amur Tigers [5], chimpanzees [28], Andean
bears [21], and Saimaa ringed seals [29]. More recently, the

MegaDescriptor suite of Swin-transformer-based models has
been developed capable of re-identifying individuals from a
wide range of species [30].

Hybrid approaches have been considered, merging the
strengths of local descriptor-based models with deep learning
approaches. A study of sea turtles [31] used SIFT and Super-
point descriptors with Mask R-CNN, Hybrid Task Cascade and
Mask2Former deep learning models with Swin-B and ResNet-
50 backbones. Another study identifying badgers [32] used a
CNN with SIFT and BRISK (Binary Robust Invariant Scalable
Keypoint). Our study compares solutions using a cutting-edge
deep learning approach and contrasts it with a local descriptor-
based model.

Summary: Most existing studies for recognising individuals
within a species have mainly focused on supervised learning
models and are often species-specific. As highlighted, this
approach provides challenges in developing large labelled
datasets and falls short of addressing the need to accommodate
the introduction of new, unseen individuals. Recently, the use
of unsupervised methods has been considered. Our previous
work recognising kākā individuals [11] using SIFT achieved
a 78% accuracy and a study of Meerkats at Wellington Zoo
presenting a Recurrence over Video Frames (RoVF) model
[33] noted a 49% accuracy. Our present study continues
to address this gap by introducing an unsupervised vision
transformer approach that achieves higher accuracy in re-
identifying individuals within a species compared to existing
literature.

III. METHODOLOGY

A. Data Collection
Our study data1 was captured from video recordings at a

dedicated feeding site within Zealandia Te Māra a Tāne2.
This unique location in Wellington, New Zealand, is the
world’s first fully-fenced predator-free urban ecosanctuary. We
mounted a motion-detecting GoPro Hero camera inside the
feeder station, which activated during kākā visits to the feeder
box. We conducted our recordings over three distinct periods,
giving three datasets: (A) November 2021 with a GoPro Hero
8 camera as presented in a previous study by the authors [11];
(B) 15 November 2022 until 7 January 2023 utilising the same
GoPro Hero 8 camera; (C) 8 January 2023 until 18 January
2023 with a higher performing GoPro Hero 10. Using a similar
data collection methodology to that in our prior work [11], we
also visually observed the kākā during feeding sessions, noting
the band colours on the legs of any tagged individuals. This
step enabled us to build three labelled datasets to evaluate our
model’s accuracy, as our system does not require labelled data
to identify individuals.

Fig. 1 depicts the purpose-built feeder station. We installed
the ledge and nozzle in a position to capture the kākā’s head
in a profile view. We obscured background details inside the
casing using a white, non-reflective plastic cover.

1The data collection process was approved by the Victoria University of
Wellington Animal Ethics Committee (Approval Number 29656)

2https://www.visitzealandia.com/



Fig. 1. Kākā feeding station at Zealandia (left). The bird perches on a ledge
beneath the feeder and reaches its head into the box (bottom right) to retrieve
food supplied through a nozzle (top right).

B. Labelled Dataset

We built a frame extractor algorithm based on our previous
work [11] to extract frames from our video recordings captured
during each period. Our setup of the feeder ensured the
bird was captured centrally within the frame. The algorithm
determined the presence of a kākā by checking the pixel
intensity at this central location. If the greyscale pixel was
less than our threshold of 50, we concluded that the frame
contained a bird. This threshold was chosen because if the
bird was not present, the white background would have a
value much higher than this threshold. In addition, to reduce
the pre-processing step of manually removing blurred frames
caused by the motion of the bird as it moved into the feeder,
we delayed running our frame extractor algorithm until ten
consecutive frames containing the bird had passed. Table I
summarises our three datasets, noting the number of videos
and a count of the extracted frames. Each bird within the
labelled datasets wears at most three coloured bands to form
a label – a cohort band on one leg with up to two smaller
coloured bands on the other leg. These bands are combined to
produce a unique colour combination. For example, the label
O-RS uniquely identifies a bird with an Orange band on the
left leg and a Red band above a Silver band on the right leg.

TABLE I
DATASET SUMMARY

Dataset Birds Videos Frames
A 8 153 984
B 17 1888 2998
C 16 708 5205

Total 41 2749 9187

C. Re-identification of Individual Kākā within Images

We evaluated two image matching approaches to identify
individual kākā in our datasets – (1) a SIFT/RANSAC-based
method from our previous study [11] and (2) a deep learning
vision transformer-based method using a DINOv2 model.

SIFT and RANSAC (RANdom SAmple Consensus) [34]
were used together to form a robust image matching pipeline.
SIFT detects distinctive image keypoints and extracts scale

and rotation invariant feature descriptors. After detecting these
features in two images, a matching algorithm pairs similar
keypoints based on their descriptors. However, some matches
may be incorrect for reasons such as noise. RANSAC itera-
tively selects random subsets of matched points and estimates
a transformation model to project one image onto another. The
transformation that best fits most correct matches is selected,
and the outliers (incorrect matches) are rejected.

DINOv2 is a self-supervised computer vision model devel-
oped by Meta AI. The transformer is trained on unlabelled
image data allowing it to learn all context within an image. It is
regarded as the first self-supervised learning model applied to
image data that creates visual features comparable to (weakly)
supervised methods across various benchmarks without requir-
ing fine-tuning [12]. These characteristics make it particularly
well-suited to our task, supporting our need to use unlabelled
data and minimise overhead by eliminating the need for fine-
tuning. Our end objective is to deploy our model on Edge
AI devices. Therefore, we selected a smaller architecture that
minimises computational resources to investigate its accuracy.
Hence, we used the small model ViT-S (21M params, 6 heads)
with an embedding dimension of 384 and patch size of 14. Our
images were resized and right-cropped to the nearest smaller
multiple of the patch size. The pixel values were normalised
to that of ImageNet. We generated a similarity matrix for each
model to compare all images within a dataset. We excluded
matching images from the same video as they may present
overly similar instances of the same bird and bias our matching
accuracy. The metric used to calculate the image similarity
measure is specific to each of the DINOv2 and SIFT models as
the underlying representations of the extracted features differ
for each. Using this matrix, we identified for each image the
most similar image considered as the best match. If this best
match had the same label as our query image, we concluded
we have correctly identified the bird.

In our SIFT/RANSAC model, we used a custom similarity
measure from our prior work [11] restated in (1):

S(D) = |D|+ 1

1 +
∑D

n=1
dn

|D|

, (1)

where D is the set of distances between matches, dn is the n-th
distance in the set D, and |D| is the count of total matches.

In our DINOv2 model, the vision transformer generated
embeddings of the image rather than a set of keypoint de-
scriptors like SIFT. Hence, we chose to use cosine similarity
as our evaluation metric. Cosine similarity is frequently used in
image processing to compare embeddings. It is computation-
ally efficient in high-dimensional spaces and robust to noise
as it focuses on the angle between vectors rather than their
magnitudes.

D. Re-identification of Individual Kākā within Video

We collectively considered all frames extracted from each
video and used their predicted labels from the DINOv2 model
results to evaluate the overall accuracy of identifying a bird



MR-R(57) = PurpleRed-Red (57 Images)

Fig. 2. Accuracy of DINOv2 and SIFT-based models to re-identify kākā within images for each band label across our three datasets.

within a video. We considered two methods which are sim-
ple, efficient, and scalable, demonstrating impressive accuracy
without complexity:

• Applying a threshold value for accuracy, requiring 60%
or 80% of a video’s frames identifying the same bird.

• Implementing majority voting, the bird appearing in most
frames could be considered the bird in the video.

E. Explainability

To understand the key characteristics that distinguish each
bird and gain insight into the image features that the DINOv2
vision transformer model focuses on, we explored the patch
embeddings within the model. Each patch is represented by
a 384-dimensional embedding. Following a methodology pre-
sented in previous studies [12], we applied Principal Compo-
nent Analysis (PCA) to visualise this high-dimensional space,
reducing the embedding to three principal components. The
first component captures the largest variance within the data.
Given that our images feature a white background with a dark-
coloured bird, this contrast produces the most variation. Hence,
we inferred that the first component primarily represents the
difference in background and foreground [12]. Therefore, we
identified a threshold within this first component to distin-
guish these two types of patches. We effectively removed the
background by retaining only patches with first component
values above our threshold. Finally, we performed a further
PCA to reduce the dimensionality of the foreground bird
patches to 3 components. We applied this methodology to
three example images and visualised the results by mapping
the components to RGB colour channels. In addition, we found
the minimum Euclidean distances between patch embeddings
of two example images and visualised a subset of the results
to illustrate the quality and effectiveness of the DINOv2
embeddings in identifying matching features within image
pairs.

TABLE II
ACCURACY OF RE-IDENTIFYING KĀKĀ WITHIN VIDEOS.

Majority Threshold
Dataset Voting 60% 80%

A 89.5 86.3 77.8
B 97.3 96.9 96.7
C 97.7 97.0 95.2

IV. RESULTS

A. Accuracy from Images

Fig. 2 depicts the accuracy of the DINOv2 and SIFT-based
models in correctly re-identifying a kākā individual within an
image. Across all images in our datasets, the overall accuracy
of the DINOv2-based model is superior to that of the SIFT-
based model. DINOv2 achieves an accuracy of 87.3%, 97.3%,
and 97.5% for datasets A, B, and C, respectively, while SIFT
shows accuracies of 82.5%, 95.7%, and 97.3% respectively.
Dataset A has fewer individual birds and images than datasets
B and C. The DINOv2 model (blue) is more accurate than the
SIFT model (RED) on datasets A and B (GoPro8 lower res-
olution images), however, it is only marginally more accurate
on dataset C (GoPro10 higher resolution images). Hence, the
DINOv2 model could be considered more resilient to image
quality. With the improvement the SIFT model shows in the
higher resolution Dataset C, we may consider its accuracy
more susceptible to lower image quality. Birds with a limited
number of videos show lower accuracy with DINO. For
example, OL-Y in dataset C has only two videos, resulting
in seven extracted frames. The first video, consisting of five
frames, correctly matched one frame from the 2nd video,
yielding an accuracy of 20%. Similarly, the second video
containing two frames produced one correct match from the
1st video, achieving an accuracy of 50%.

B. Accuracy from Videos

Table. II presents the results for accurately re-identifying a
bird from a video clip using majority voting and the threshold
approach. Across all datasets, majority voting demonstrated
superior performance, with an accuracy of 89.5%, 97.3%, and



97.7% for datasets A, B, and C, respectively. Nevertheless, the
threshold approach showed competitive results with datasets
B and C above 95%. Both approaches faced challenges when
processing videos with a low count of extracted frames. For
instance, in a video containing four frames, if three frames
correctly identify the bird, then the majority voting and 60%
threshold approaches will successfully identify the bird in
the video. However, the 80% threshold will be unsuccessful.
Therefore, combining these approaches may offer a more
effective alternative in future work.

C. Explainability

Image A, shown in Fig. 3, depicts an image of the L-MB
banded bird. We visualise a PCA of the patch embeddings
for the first three components in Fig. 3(b). We mask the
background by applying a threshold to the first component
and perform a second PCA on the bird patches as illustrated
in Fig. 3(c). In visualising each component separately and with
mapping to RGB colour channels, Fig. 3(d) reveals that the
first component (red) predominantly represents the bird’s body,
the second component (blue) highlights the chest and beak
areas and the third component (green) captures the edges of
the bird’s silhouette.

Image B is the best match to Image A, while Image C
depicts the L-MB bird in a different pose. After removing the
background in Fig. 3(c), the colour tones in both Image B

Image A Image B Image C

(a)

(b)

(c)

(d)

Fig. 3. (a) Image A: L-MB bird; Image B: Best match to Image A; Image C:
Alternate pose of L-MB bird. (b) First 3 components of PCA from DINOv2
patch embeddings. (c) First 3 components of PCA following background
removal. (d) Individual component plots.

Fig. 4. Feature matching between patches in images of L-MB banded bird
using minimum Euclidean distance.

and Image C are similar despite the different poses. Blueish
tones identify the beak area, pinkish tones the body, and
orangish tones denote the lower back, with a yellowish-green
silhouette. Visualising the components separately in Fig. 3(d)
also shows similar colour highlighting across the same areas
of the bird. This consistency in colouring suggests that our
model effectively identifies different parts of a kākā regardless
of pose.

We consider Image A and Image C from Fig. 3 and
illustrate in Fig. 4 feature matching across different poses
using minimum Euclidean distance. We select six patches in
Image A and show their corresponding patches in Image B as
measured by the minimum Euclidean distance between patch
embeddings. The blue line matches a patch on the middle
upper mandible of the bird, the red line depicts the gape line
between the upper and lower mandible, the cyan line captures
the edge of the bird’s eye, the green line the middle lower
mandible, the pink line is near the middle of the bird’s head
below the eye, and finally the yellow line maps patches on the
back of bird below the head. These results illustrate the ability
of DINOv2 to capture these important features within the
image embeddings despite variations in the bird’s positioning.

V. CONCLUSION

Our findings show that with high precision, a re-
identification model based on state-of-the-art vision trans-
formers such as DINOv2 can accurately identify individual
kākā from images. We have shown through extensive experi-
ments with three labelled datasets that our unsupervised deep
learning approach outperforms our canonical SIFT/RANSAC
based method. Adopting a majority voting method to identify
an individual kākā within a video using extracted frames
achieves impressive accuracy. In addition, applying a threshold
technique also yields effective results. By extracting patch
embeddings from our DINO-based model, we demonstrated
that our approach successfully identifies key parts of an
individual bird, irrespective of pose. These results pave the
way for further advancements in recognising individual parrots
using AI, providing a non-invasive automated solution for
monitoring the populations of threatened bird species.

We acknowledge the limitations of our study. Our DINO
and SIFT-based models utilised different similarity measures
to construct the similarity matrix. Due to the fundamental
differences in their foundational structures, it is not feasible to
design identical similarity functions that perform optimally for
each model. Our SIFT-based model generates 128-dimensional
embeddings for each keypoint descriptor, while our DINOv2
model produces a single 384-dimensional embedding without



keypoints. These differences make it impractical to restructure
the DINOv2 embedddings to be compatible with our SIFT
similarity function, and likewise with adapting our SIFT
descriptors for effective comparison using cosine similarity.

Our datasets currently comprise images captured within a
controlled bird feeder environment. We plan to expand this
by incorporating publicly sourced images and those collected
from camera traps and citizen scientists. Our rich datasets
also contain temporal information, enabling future study into
the possibility of accurately identifying a bird based on im-
ages from earlier periods. We also aim to investigate more
innovative methods for identifying an individual by analysing
videos in their entirety rather than treating them as a set of
individual frames. In addition, we acknowledge the challenges
of identifying new individuals within populations and will
address this in future work.
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