
1

Re-Identifying Kākā with AI-Automated Video

Key Frame Extraction

Paula Maddigan, Andrew Lensen, Rachael C. Shaw

Abstract

Accurate recognition and re-identification of individual animals is essential for successful wildlife

population monitoring. Traditional methods, such as leg banding of birds, are time consuming and inva-

sive. Recent progress in artificial intelligence, particularly computer vision, offers encouraging solutions

for smart conservation and efficient automation. This study presents a unique pipeline for extracting

high-quality key frames from videos of kākā (Nestor meridionalis), a threatened forest-dwelling parrot in

New Zealand. Key frame extraction is well-studied in person re-identification, however, its application

to wildlife is limited. Using video recordings at a custom-built feeder, we extract key frames and

evaluate the re-identification performance of our pipeline. Our unsupervised methodology combines

object detection using YOLO and Grounding DINO, optical flow blur detection, image encoding with

DINOv2, and clustering methods to identify representative key frames. The results indicate that our

proposed key frame selection methods yield image collections which achieve high accuracy in kākā

re-identification, providing a foundation for future research using media collected in more diverse and

challenging environments. Through the use of artificial intelligence and computer vision, our non-

invasive and efficient approach provides a valuable alternative to traditional physical tagging methods

for recognising kākā individuals and therefore improving the monitoring of populations. This research

contributes to developing fresh approaches in wildlife monitoring, with applications in ecology and

conservation biology.
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I. INTRODUCTION

EFFECTIVE conservation of wildlife populations requires understanding individual animal

behaviour. How animals behave can influence population dynamics and a species role

within an ecosystem [1], [2]. Yet a detailed knowledge of behaviour is built on accurate recog-

nition of individuals and their re-identification (re-ID) across locations and time. Animal re-ID

therefore plays a vital part in conservation [3], [4]. However, many species present substantial

re-ID challenges for researchers due to their complex social behaviours, high mobility, and

visual similarities among individuals [5]–[7]. For these reasons, the kākā (Nestor meridionalis),

a sociable but endangered parrot found in select forests and urban areas in New Zealand, is an

ideal example of a species that requires innovative monitoring approaches. Traditional methods

for kākā re-ID, such as leg banding and visual re-sightings of banded individuals, are time-

consuming and invasive [8], [9]. Recent advancements in computer vision (CV) and machine

learning (ML) have created new opportunities for automating the re-ID of individuals within

a population, enabling researchers to collect high-quality data and video footage of individual

animals without disrupting their natural behaviour [10]–[14].

Selecting key frames (a compact set of representative images) from video is essential in

preparing data for downstream analysis. It preserves information, reduces redundancy, improves

computational efficiency, and optimises storage space. While this concept has been widely

recognised and addressed across various CV research domains, its importance has been under-

explored for recognising individuals in wildlife recordings despite, being equally relevant [15].

One reason for this lies in the nature of the available data. Research on person re-ID often

leverages large datasets such as those collected from surveillance, security, and smart city

solutions [16]–[18], which provide an abundance of diverse data. Human movement tends to

be predictable and key frames can be easily identified based on face position, gait, or scene

changes. In contrast, for some wildlife species, their movements are unpredictable, and highly

variable in pose and behaviour, unlike human subjects. Moreover, wildlife re-ID is hindered

by limited access to sizable data collections, relying instead on small species-specific datasets

[19]–[26]. These limitations not only restrict the diversity across frames, but also underscores

the need for effective frame selection strategies similar to those used in other re-ID tasks.
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This study proposes a methodology for automating key frame extraction from videos for

wildlife re-ID, and we illustrate its application to kākā. Using footage of kākā at a custom-

built feeder station, we develop an innovative pipeline that improves upon the accuracy of our

previous heuristic-based approach [19], [20]. By leveraging recent developments in artificial

intelligence (AI) models for object detection and image embedding, combined with traditional

methods like clustering and optical flow, we present a robust unsupervised methodology for

extracting feature-rich frames ideal for image matching.

Our work marks a significant contribution to research in kākā monitoring and re-ID and offers

transferable solutions that may be adapted for use with other wildlife species. We hope our study

will raise awareness about the importance of key frame extraction in wildlife re-ID pipelines for

improving accuracy, mirroring its established significance for other downstream video analysis

tasks such as classification and summarisation.

Contributions

• We propose an innovative approach for automating key frame extraction from videos to

improve the accuracy in recognising individual kākā.

• We develop and fine-tune an AI model for detecting kākā in images.

• We create a comprehensive dataset comprising of selected kākā images which may serve

as a foundation for future kākā re-ID studies and the development of new re-ID methods.

II. RELATED WORK

A. Key Frame Extraction from Videos

Methods for extracting key frames from videos have been widely studied, especially for

summarising and classifying videos [27], [28]. We briefly outline some recent approaches which

have combined different methods to achieve promising results for these tasks before focusing on

those specifically for wildlife re-ID. One study [29] filtered out unimportant frames by extracting

only one frame per second and removing monochromatic frames. The authors then aggregated

visual and structural features before clustering to select informative frames, concluding their

pipeline performed well on OpenVideo and YouTube datasets. In another approach [30], the

authors used a CNN to extract features from the frames, which they subsequently clustered

using a density peaks clustering algorithm to select key frames. They then used an LSTM for

classifying the video, which showed promise on action recognition and human motion datasets.
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Other researchers [31] have used deep learning to divide videos into shots and extract relevant

features, performed clustering, then remove redundant frames. The application of such hybrid

approaches to key frame extraction from videos has successfully spanned various domains, from

sports analysis [32], [33] to deepfake detection [34] and sign language recognition [35].

Extracting key frames from videos is commonly used to represent the story within a video [30],

documenting the pictorial narrative and scene changes. However, we aim in our study to extract

key frames that provide high-clarity images for the downstream task of recognising individuals,

capturing each bird’s intricate and distinctive characteristics for accurate feature matching and

re-ID. To date, significant research has focused on key frame extraction for person re-ID in

videos [36]–[38]. On the other hand, wildlife re-ID tasks have predominantly focused on image

matching, where individual images are compared to measure similarity, rather than considering

video clips as a whole [39]–[45].

B. Key Frame Extraction for Wildlife Re-ID

Recently, a limited number of wildlife re-ID studies have explored video-based approaches, but

these have neither considered, nor automated the extraction of key frames. In a study on meerkats

[23] the authors extracted one frame per second from their video clips and augmented the

dataset with additional extractions by staggering the start interval. They identified the maximum

dimensions of the animal’s bounding box throughout a video clip and cropped all frames with

those coordinates, generating images of a fixed-size square.

Researchers collected videos of polar bears in zoos [24] and generated eight-second sequences

at 12.5 fps, totalling 100 frames per clip. They used a YOLO object detection model to create

bounding boxes and annotate the dataset. Applying a CNN deep learning model, they measured

the re-ID accuracy using the extracted images and employed a video person re-ID model [46]

for comparison. They concluded the video-based method outperformed the image comparison

approach.

In a study of chimpanzees using video recordings captured in the wild, the authors extracted

frames every 10 seconds. They manually annotated each image with bounding boxes and labels

to identify the 23 individuals [25].

Using streaming videos of Pandas [26], researchers calculated the similarity between adjacent

frames using a custom metric, retaining only frames considered different from their predecessors.
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In addition, they manually added images with contrasting visual characteristics. Cropping of the

pandas was done manually.

Several studies have extracted frames from videos for the re-ID of birds [19]–[22]. In our

previous work for the re-ID of kākā [19], [20], we used a heuristic approach and manually

extracted key frames to collate our datasets based on videos. We first extracted every 10th

frame. Then we ensured the bird’s head and beak were fully visible inside the feeder within

these frames and excluded any images we viewed as blurry or low-quality. We cropped the

frames using static coordinates to remove unnecessary background details.

A tracking and re-ID study on a flock of 15 cowbirds (Molothrus ater) housed in an aviary

[21] used a more dynamic approach to key frame extraction by virtually partitioning the aviary

into 3D bins. The authors extracted every 10th frame from the video clips until the bin for each

bird contained 10 images, upon which they subsequently reduced the extraction rate to every

40th frame. They note this method aided in ensuring a diversity of locations in their images.

They utilised a mask R-CNN model for object detection and cropped the images based on the

bounding boxes.

Another study on three small bird species [22] chose to configure their cameras to capture

an image at 2-second intervals instead of recording video. This approach prevented collecting

nearly identical frames and eliminated the need for extracting key frames.

C. Summary

There is limited research on key frame extraction from videos for wildlife re-ID, particularly

for species with subtle distinguishing features. Parrots, such as kākā, pose a greater challenge than

person re-ID due to the minimal visual differences in appearance among individuals. Furthermore,

existing re-ID work often neglects the significance of frame selection, overlooking the importance

of choosing sharp and clear images across diverse scenes and the potential for ML to detect

subtle differences between frames that are imperceptible to humans. This gap highlights the

need for specialised, automated AI-based approaches to key frame selection that can effectively

capture the distinguishing traits of individuals within wildlife species.
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III. STUDY DATA

We sourced our study data1 from video recordings captured at Zealandia Te Māra a Tāne, a

predator-free urban ecosanctuary located in Wellington, New Zealand. We installed a motion-

detecting GoPro Hero camera inside a purpose-built feeding station at the ecosanctuary to record

kākā visits [19], [20], as shown in Fig. 1.

Fig. 1: The custom-built kākā feeder during an active period of feeding. The design features a

ledge for the bird to perch on and a nozzle that dispenses food. The setup enables recording

of the kākā’s head in a profile view to optimise the capture of the unique beak morphology

of individuals. The figure inset shows the white, non-reflective plastic cover installed inside the

feeder to control the background environment.

Our dataset comprises three distinct collection periods: (A) November 2021, utilising a GoPro

Hero 8 camera; (B) 15 November 2022 to 7 January 2023, with the same GoPro Hero 8 camera;

and (C) 8 January 2023 to 18 January 2023, with an upgraded GoPro Hero 10.

To enable us to evaluate our proposed re-ID pipeline, we observed and recorded the identity of

all kākā that visited our feeding station during each data collection period. We identified known

individuals via their leg-band combinations2 [19], [20]. This approach generated an extensive

1The data collection process was approved by the Victoria University of Wellington Animal Ethics Committee (Approval

Number 29656)
2A cohort colour band on one leg and up to two smaller coloured bands on the other. For example “WS-P" indicates a white

band above a silver band on the left leg and a pink one on the right.
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dataset, predominantly comprising unlabelled (unbanded) birds, with a small proportion of

labelled (banded) birds. We subsequently created three labelled datasets, one for each collection

period, as described in detail in our earlier work [19], [20]. We developed our re-ID pipeline using

an unsupervised framework to accommodate the identification of previously unseen individuals

in future work. Therefore, to assess the accuracy of our system in identifying individual kākā,

we used these labelled datasets to establish accuracy metrics. Table I lists the count of labelled

birds in each dataset and the number of videos for these labelled birds.

TABLE I: Summary of Video Datasets

Dataset Labelled Birds Videos

A 7 128

B 15 1,821

C 14 517

IV. METHODOLOGY

A. Overview

The workflow to identify a kākā within visual media is illustrated in Fig. 2. We designed the

system as a pipeline of interconnected units to enable easy integration of new components or

modify/replace existing ones.

Frame Extraction

- Extract Frames
- Detect/Segment Kākā 
- Remove Blurred 
  Frames

Key Frame 
Selection

- Image Embeddings
- Dimensionality 
  Reduction
- Clustering

Similarity 
Matching

- Image Embeddings
- Similarity Scores
- Anomaly Scores

Evaluation

- Similarity Function
- New Individual
- Known Individual
- Update Database

(a) (d)(c)(b)Media

Fig. 2: Methodology for identifying an individual kākā from visual media.

The pipeline takes as input visual media such as video, still photos, or live photos and consists

of four stages:

(a) Frame Extraction: Extract all frames from the visual media (for still photos there will be

only one frame). Create a candidate set of frame(s) by detecting and segmenting kākā with

a fine-tuned object detection/segmentation model, then retaining those frames with low blur.
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(b) Key Frame Selection: Build embeddings to encode each candidate frame for media with

more than a set number of minimum frames. Select key frames using methods such as

clustering, with dimensionality reduction options during pre-processing.

(c) Similarity Matching: Build embeddings to encode each key frame. Calculate similarity

scores and anomaly scores by comparing the key frame embeddings to database embeddings

of known birds. Identify the labels of each best matched embedding.

(d) Evaluation: Using the labels from the best matched embeddings, together with similarity

scores and anomaly scores, identify the kākā in the visual media. Update the database with

the new frame embeddings and labels.

In previous work using these video datasets [19], [20], key frames were generated using an

alternative heuristic-based method to that presented in this study. Hence, we have also performed

the Similarity Matching and Evaluation stages using these heuristically generated key frame

sets to provide a comparison.

In the next section we begin by introducing Kākā-YOLO, a fine-tuned YOLO model for kākā

object detection. This model is used during the Frame Extraction stage of the pipeline in

Fig. 2(a). We then expand on each stage of the pipeline in subsequent sections.

B. Kākā-YOLO: Fine-Tuned Object Detection Model

To improve the accuracy and efficiency of detecting kākā in images during the frame extraction

stage of the pipeline in 2(a), we first fine-tuned a pre-trained YOLO (You Only Look Once)

model. The data was captured with minimal background noise hence we chose to build the

object detection component of the model without segmenting the bird. Initial experiments with

segmentation did not show improved re-ID accuracy for these datasets. The YOLO algorithm

is a state-of-the-art real-time object detection model well-suited for detecting objects in images

and videos [47], [48]. It is based on the Convolutional Neural Network (CNN) architecture

with layers for feature extraction and object detection. The model is pre-trained on the COCO

(Common Objects in Context) dataset with approximately 300K images (200k with annotations)

and 80 object categories such as cars, bicycles etc. Images are passed through the deep neural

network to predict bounding box coordinates to encapsulate objects and determine their class

labels with probabilities.

We selected the YOLO11 model [49] which was the most recent version at the time of

our study. We used the medium sized variant, YOLO11m. This model was recently measured
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against other variants and considered a top-performing model in accuracy, size and efficiency

[50], offering an ideal solution for fast real-time detection.

Fig. 3: Overview of the development of Kākā-YOLO, a fine-tuned YOLO model for kākā object

detection.

Figure 3 illustrates our fine-tuning methodology using a subset of the unlabelled kākā videos.

To compare the performance of YOLO11m out-of-the-box with our fine-tuned model, we ran

inference using a small selection of videos from the unlabelled datasets. As shown in Fig. 4

the base model often mislabels the bird and includes objects not of interest like the feeder,

highlighting the importance of fine-tuning.

1) Fine-Tuning Dataset: To create a dataset for fine-tuning our YOLO model, we used a

Grounding DINO model (tiny variant) from IDEA-Research [51]. Grounding DINO is a zero-

shot object detection model based on the architecture used in other DINO variants, together with

grounding pretraining (connecting visual data with text descriptions). The model detects objects

based on text prompts, including objects unseen in its training data (i.e. zero-shot).

Adopting this approach enabled us to automate the creation of an annotated dataset by detecting

a bird in the images and constructing bounding box coordinates. We randomly sampled 37 videos

(30fps) of unlabelled kākā birds recorded while collecting our first dataset at our feeding station.

This dataset represented our lowest resolution images and least refined setup, allowing us to

fine-tune our model on the most challenging data. This approach enabled us to develop a model

that could generalise to our new, unseen datasets. In previous studies, a common strategy was

to extract frames at regular intervals, such as every 10th frame, which often ensured variations

in the animal’s position [19], [21], [25]. Therefore, we adopted a similar strategy and extracted

every 10th frame as shown in Fig. 3a. We used Grounding DINO to detect a bird in the frame
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Fig. 4: (a) Comparison of the base YOLO11m model and (b) fine-tuned Kākā-YOLO model

inference.

using the text prompt "A bird." with a detection threshold of 0.8 (Fig. 3b). Through trial and

error using a small set of three videos, we identified this threshold as effective. Higher values

tended to capture frames with partial kākā, which we considered insufficiently informative, while

lower values failed to detect birds in more complex poses. For every successful detection, we

generated normalised bounding box coordinates. We saved the image with the annotated bounding

box (Fig. 3c) then visually validated the images to confirm the successful object detection. We

saved a copy of the image (Fig. 3d) and stored the coordinates in a labels text file (Fig. 3e) for

use in our fine-tuning dataset. The process generated 516 images with bounding box coordinates.

2) Fine-Tuning our YOLO Model: We chose a 70/30 train/test split, giving 361 images in our

training dataset and 155 in the test set (Fig. 3f). Our model contained one class, “kākā", and

we trained3 over 30 epochs with the recommended default parameters for our hardware and the

YOLO model using a batch size of 16, image size of 640, auto optimiser with a learning rate of

0.01 and momentum of 0.937. Through iterative experimentation, we found that training for 30

epochs was sufficient for model convergence, giving a final trained model 40.5MB in size. We

3Training performed on an Apple Silicon MacBook M4 Max with 64GB memory and 40-core GPU using the MPS (Metal

Performance Shaders) framework.
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use common metrics in computer vision [52] to present the performance of our model, namely

precision, recall, mAP@0.5, mAP@[0.5:0.95] :

• Precision measures the proportion of correctly detected kākā out of all detections made by

the model.

• Recall measures the proportion of actual kākā in the images that were correctly detected.

• mAP@0.5 (mean Average Precision at an IoU threshold of 0.5) averages the precision when

considering a bounding box is correct if it overlaps with a ground-truth box by at least 50%.

• mAP@[0.5:0.95] (mean Average Precision averaged over multiple IoU thresholds from 0.5

to 0.95) provides a more comprehensive evaluation of the model’s detection performance

by averaging mAP scores across thresholds from 50% to 95% of overlap between predicted

and ground-truth bounding boxes.

The final metrics for our model give a precision of 99.96%, recall of 100%, mAP@0.5 of

99.50%, and mAP@[0.5:0.95] of 99.49%. These results indicate our fine-tuned model performs

exceptionally well for our study.

C. Frame Extraction

Frame Extraction

Extract All
Frames

Select 
Kākā 

Frames

Crop

Remove 
Blurred 
Frames

Candidate 
Frames

Calculate Blur

Feeding Station 
Video

Bounding Boxes

Detect/Segment 
Kākā

:
:

:
:

Fig. 5: Frame extraction stage of pipeline.

Returning to our pipeline in Fig. 2, the steps within the Frame Extraction stage are outlined in

Fig. 5. We extracted all frames from each video in our three labelled datasets. For each frame,

we calculated the Gunnar Farnebäck motion score4. This step allowed us to identify blurred

frames that may not be useful as key frames. The Gunnar Farnebäck motion score estimates the

motion of every pixel between a frame and its predecessor, referred to as dense optical flow.

4Using the implementation from the Python OpenCV library.
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However, rather than directly comparing pixel values, it approximates the intensity of small local

regions using a polynomial expansion function. It then quantifies the movement between frames

by comparing the functions and computing their displacement [53].

We then applied our fine-tuned Kākā-YOLO model to detect kākā in the frames (the segmen-

tation element was not implemented during this preliminary study). Frames without detections

or with high motion scores (indicating blur) were discarded. We used a trial-and-error approach

to establish an acceptable threshold for identifying blurry frames. By analysing a small random

sample of labelled videos, we found that removing the top 20% of frames with the highest motion

scores per video effectively reduced blurred images. Figure 6 illustrates the motion scores for

an example video and shows how these scores reflect the bird’s movement across video frames.

We then cropped the remaining frames using bounding box coordinates generated by the object

detection model, forming our candidate images for key frame selection.

Fig. 6: Gunnar Farnebäck motion scores (pink) for each frame using an example video indicating

the amount of movement between consecutive frames. Blue points have no detected bird (A).

Each peak following a blue set of low scored points represents the bird moving into the feeder

(B). Consecutive pink points with low scores are the bird feeding (C). Each peak after a set of

low scored pink points represents the bird leaving the feeder (D). Red points highlight frames

considered high motion with blur.

D. Key Frame Selection

Figure 7 illustrates the steps in the Key Frame Selection stage of the pipeline in Fig. 2(b).

Following the creation of the candidate set of frames in the previous stage, we built embeddings of

the frames using an image encoder. An image embedding provides a unique numerical representa-

tion of an image, capturing its important features and presenting the image in a format compatible
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Key Frame Selection

(1)

(n)

(2)
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Encoder

Image Embeddings
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Clustering

……
……
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……
……

……
……
……

……
……
……

NLDR

Key Frames

Random Selection

Candidate 
Frames

All Frames (If frame count ≤ min)

Fig. 7: Key frame selection stage of pipeline.

with computer vision tasks. We used a DINOv2 small model ViT-S [54] with an embedding

dimension of 384 and patch size of 14 from the PyTorch Hub5. This DINOv2 variant had

demonstrated excellent performance in our previous study [20]. The model is a self-supervised

CV encoder developed by Meta AI and trained on unlabelled image data. It creates image

embeddings comparable to (weakly) supervised methods across various benchmarks without re-

quiring fine-tuning, making it well-suited to our study based on unlabelled data. We pre-processed

each frame by resizing it to square (224x224) and using the standard ImageNet normalisation

(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ensuring DINOv2 processed the frames

in the same way it learned during training.

We considered two well-known unsupervised clustering methods to select a set of key frames

– k-means [55] and k-medoids [56]. The k-means method groups similar data points into k

clusters by minimising the combined distance metric between each data point and the cluster

centroid (mean value of all cluster points). It is an efficient iterative algorithm but is sensitive

to outlier points.

The k-medoids algorithm uses a similar iterative process, but instead of using centroids

calculated from mean values, it uses actual points in the data (medoids) as cluster centres.

One drawback with using these clustering methods on high-dimensional data such as image

embeddings is they can suffer from the “curse of dimensionality" [57] especially when the

instances are sparse, as in our case where some videos produce few suitable frames to cluster.

To address this issue, we experimented with applying a non-linear dimensionality reduction

technique prior to clustering. We chose UMAP (Uniform Manifold Approximation and Pro-

jection) [58], a computationally efficient, state-of-the-art method that preserves both local and

5https://pytorch.org/hub/
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global structures and has been shown to improve clustering algorithms [59], [60]. Table II lists

our UMAP parameter settings.

TABLE II: Parameter settings for UMAP

Parameter Description

n_components=5 UMAP requires the output dimensionality to be lower than the number of instances to

ensure stability of the lower-dimensional embedding. Exceeding this threshold results

in a non-full rank matrix during the UMAP reduction algorithm. This complication

can lead to unreliable distance calculations and hinder manifold learning giving a poor

preservation of local structure. For our datasets, some videos contained at most nine

usable frames. Hence, to future-proof our method and allow for short video capture

and media, we selected a dimension of 5.

min_dist=0 Setting the minimum distance hyper-parameter to zero makes points pack together

densely, allowing for cleaner separations between clusters [59].

init=PCA Principal Component Analysis (PCA) is a dimensionality reduction method to simplify

complex data by mapping it into a lower-dimensional space and capturing the most

variance in the data. As it excels at retaining the global structure in the data, using

PCA’s first five principal components provides a good starting point for the UMAP

initialisation [61].

n_neighbours=min(15,frame_count) We used the default of 15 but adjusted it to accommodate videos with fewer than 15

frames.

random_state=42 Using a seed ensures the reducibility of our experiments.

When using k-means and k-medoids, we experimented with k ∈ {5, 6, 7, . . . , 20} to identify

clusters and select key frames representing each cluster. We aimed for at least five key frames,

which would provide a good summary of the video, but not more than 20, as having too many

would unnecessarily fill up storage space.

For each value of k, we calculated the silhouette score [62] as defined in Eq. (1). It measures

the clustering quality by evaluating how well a data point fits within its assigned cluster compared

to other clusters. A score close to 1 indicates good clustering, 0 indicates poorly defined clusters,

and -1 indicates points may be allocated to wrong clusters. We chose the value of k with the

highest silhouette score.

S =
1

n

n∑
i=1

b(i)− a(i)

max{a(i), b(i)}
(1)
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where a(i) is the mean distance from point i to all other points in the same cluster (intra-cluster

distance) and b(i) is the lowest mean distance from point i to points in the nearest different

cluster (nearest-cluster distance) in a sample of size n.

Using these methods we chose one key frame to represent each cluster of frames. For k-

means, we calculated the distance between each frame in the cluster and its centroid, and chose

the frame closest to the centroid as the key frame. For k-medoids, since the centroid is an actual

frame, we used this frame as the key frame.

To establish a baseline for comparison without clustering, we included two sets of randomly

selected keyframes:

• One set contained five key frames, the minimum number of frames we considered useful

to represent a video.

• The other set contained seven keyframes, allowing us to assess the impact of increasing the

number of key frames on the accuracy of our image matching.

Including random selection key frame sets enabled us to evaluate how well our proposed

clustering methods performed. We also investigated whether using more key frames (in this

case, seven instead of five) improved image matching accuracy. We chose not to include more

than seven key frames because generating, processing, and storing a large dataset of images

would be impractical for our pipeline and database. We considered seven frames to be realistic

and relevant to our study goals. Media (short video or photos) with less than an set number of

minimum candidate frames (e.g. ≤ 5) will have all candidate frames selected as key frames.

In summary we explored six different methods to select a set of key frames:

1) k-means clustering

2) k-medoids clustering

3) UMAP reduction followed by k-means clustering

4) UMAP reduction followed by k-medoids clustering

5) Random selection of five frames

6) Random selection of seven frames

E. Similarity Matching

Figure 8 illustrates the steps in the Similarity Matching stage of the pipeline in Fig. 2(c). The

previous stage identified key frames to represent the video. This stage builds image embeddings

of key frames for the purpose of similarity matching and finding the best matched bird in the
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Fig. 8: Similarity matching stage of pipeline.

database. This stage also explores the efficacy of each key frame extraction method discussed

during the previous stage. In future work we will investigate training a loss head for the

embedding encoders to determine their utility in improving the embedding space. However,

doing so will require a labelled dataset, which we intentionally avoided during this work to

maintain an unsupervised approach

We evaluated three different embedding models (encoders) with different architectures and

compared the quality of image embeddings by measuring the accuracy of our similarity matching

process:

• DINOv2: We continued to use the DINOv2 ViT-S model from our “Key Frame Selection"

stage (Section IV-D) with embedding size 384.

• ResNet: This is an established well-known and widely-used model. We chose the ResNet50

model (specifically, ResNetV1.5) from Python’s TorchVision library6. This convolutional

neural network (CNN) includes residual connections and is pre-trained on the IMAGENET1K_V2

dataset. We removed the final classification layer, giving an image embedding size of 2048.

• AIMv2: We used Apple’s Autoregressive Vision Transformer (ViT Large 224px) model

[63], a relatively recent and less adopted model in CV tasks. Its inclusion in our study

provided useful comparison against more established image encoders. We chose the AIM

Python library TorchVision wrapper and applied pooling to the last layer to give an image

embedding of size 1024.

We began by evaluating the performance of our three encoders on dataset A, which comprises

our lowest-resolution videos and least refined setup. We chose this dataset as the basis for

6https://pytorch.org/vision/main/models/resnet.html
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identifying the top-performing encoder as it presents the most challenging conditions in our

video collection, allowing us to ensure the robustness, reliability, and performance of our chosen

model. We then used this model for datasets B and C. To provide a baseline for comparison, we

included the traditional hand-crafted SIFT/RANSAC approach explored in our previous study

[20]. In this method, SIFT detects keypoints and extracts feature descriptors, which are then

matched between images. RANSAC subsequently removes incorrect matches due to noise.

We conducted similarity matching of the image embeddings using cosine similarity which is

a widely used method for evaluating the similarity between high-dimensional embeddings. It

measures the similarity between two vectors A and B by calculating the cosine of the angle

between the vectors and determining whether the vectors are pointing in similar directions.

The formula is given in Eq. (2).

cos(θ) =
A ·B

∥A∥∥B∥
(2)

To find the best match for each key frame we used Eq. (2) to compare each frame embedding to

all other frame embeddings in its dataset, excluding those extracted from the same video. Then,

for each key frame embedding we assigned as the predicted label the leg band combination from

the best matched frame embedding according to the highest similarity score.

As an additional step we evaluated the performance of the image-matching method by com-

paring the predicted label of each key frame to its actual label. If the labels matched, we

considered that the bird in the image was correctly identified. Otherwise, we considered it

incorrectly identified. We evaluated the image-matching accuracy of correctly identifying each

labelled individual in the dataset and calculated the overall image-matching accuracy for each

dataset. In this study we focused on closed-set re-ID hence we omitted the anomaly scoring at

this stage.

F. Evaluation

In the previous stage, for each of the key frames we selected a best matched frame from the

dataset using the highest similarity score, and noted its label. Figure 9 shows the flow of the

Evaluation stage of the pipeline in Fig. 2(d), taking the key frame embeddings, matched labels,

and scores as input. We built a simple function f to take these values and identify the individual

in the video. As this study used a closed-set dataset all individuals were known hence, anomaly
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Fig. 9: Evaluation stage of pipeline.

scores were not calculated, the function did not evaluate if the individual was a new bird or not,

and the human-in-the-loop interrupt was not required.

We implemented two efficient and straightforward variations of the evaluation function f :

1) Threshold-based approach: We applied a threshold of 60% or 80%, where an individual in

a video was considered correctly identified if at least this percentage of its frames matched

the same bird.

2) Majority voting: We used a simple majority vote, where the bird that appeared in the most

frames from a video we deemed to be the individual present in the video.

We evaluated the accuracy of identifying individual kākā in videos using both variations of

the evaluation function f . This allowed direct comparison with our earlier heuristic-based key

frame selection approach in our previous work [20].

We used statistical significance tests to evaluate the performance of our proposed video

re-ID methods. Specifically, we compared each proposed extraction method with every other

proposed method and our previous heuristic method. This approach allowed us to identify the

top-performing methods and determine if our new approaches improve upon our earlier study.

We chose the McNemar statistical test of homogeneity [64], a non-parametric test that does not

require normally distributed data. We applied a Bonferonni correction for multiple contrasts.

The McNemar test is suitable for detecting differences between paired samples on a dependent

categorical variable with only two categories (dichotomous). In our study, the samples are our

videos, and the dichotomous variable represents success or failure in identifying an individual

bird in a video. The test measures the difference in the count of errors between the two selected

methods, with our null hypothesis stating both models have a similar proportion of errors. The
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McNemar test7 is equivalent to the t-test but is used for binary targets instead of continuous

ones. It is considered the most appropriate test for comparing dichotomous outcomes using two

dependent samples [65]. Using this test, we determined whether our proposed methods demon-

strated statistically significant improvements over our previous heuristic method and identified

the most effective approaches.

G. Similarity Matching Against a Partially-Labelled Dataset

To assess the accuracy of image matching from an alternative perspective, we conducted a

further experiment using the images in Dataset A generated via the heuristic-based method.

We compared each image in the labelled dataset against a partially-labelled dataset comprising

labelled and unlabelled images (5,977 images).

We used two methodologies – SIFT and DINOv2 embeddings. We then compared them against

two methods from prior research which used a k-means image masking method – SIFT with

background masking and SIFT with combined background and nozzle masking [19].

V. RESULTS AND DISCUSSION

In the following sections we present our results from the four stages in our pipeline depicted

in Fig. 2 – Frame Extraction (Fig. 5), Key Frame Selection (Fig. 7), Similarity Matching

(Fig. 8), and Evaluation (Fig. 9).

A. Frame Extraction

For each of our datasets, Table III gives a count of the number of labelled birds, the number

of videos, the total frames extracted from all videos in the dataset, the number of frames with

kākā detected, and the final count of candidate key frames following removal of high motion

images. (Breakdowns of these figures by bird label within each dataset is provided in Tables VIII

to X of Appendix A.)

B. Key Frame Selection

1) Clustering of Frames: To illustrate our approach, we continue with the example video

introduced in Fig. 6 with 259 frames. We detected kākā in 151 of these frames, and after removing

7We chose the binomial distribution implementation from the Python statsmodels library.
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TABLE III: Dataset Summary from the Frame Extraction Stage

Dataset Labelled Birds Videos Total Frames Kākā Frames Low Motion Frames

A 7 128 64,791 35,825 28,536

B 15 1,821 234,911 137,106 107,759

C 14 517 504,247 231,350 184,551

31 frames which we considered high-motion images, our candidate set for key frame selection

contained 120 frames. We compared the performance of k-means and k-medoids clustering

algorithms, both with and without prior dimensionality reduction using UMAP. Our results

showed that k-means with UMAP reduction yields 5 clusters based on the highest silhouette

score, whereas k-means, k-medoids, and k-medoids with UMAP reduction result in 6 clusters.

We used UMAP for NLDR of the embeddings prior to clustering. However, UMAP is also

a useful tool for reducing embeddings to two dimensions for visualisation tasks. Hence we

visualise the results by reducing the embeddings to two dimensions using UMAP, as pictured

in Fig. 10, with each cluster assigned a distinct colour. The k-means clusters (Fig. 10a) appear

more defined than those from k-medoids (Fig. 10b). It is important to note that some information

will be lost through the UMAP reduction process, with only essential features preserved in the

reduced embeddings. Therefore, the visualisations of the UMAP versions of k-means (Fig. 10c)

and k-medoids (Fig. 10d) may give the illusion of superior clustering compared to the original

embeddings (Fig. 10a-b). Nevertheless, these visualisations still offer a valuable means of com-

paring the relative performance of the k-means and k-medoids algorithms using UMAP reduced

embeddings. Figure 10e illustrates the silhouette scores across increasing values of k, showing

peak values at 5 clusters for k-means and with 6 clusters for the remaining three methods.

2) Silhouette Scores: To determine the most suitable number of key frames k (clusters) for

each video, we selected the value of k, giving the highest silhouette score for k between 5 and

20. Fig. 11 displays the distribution of these scores calculated for each video across our three

datasets.

Visually we observe two trends – (1) k-means clustering tends to produce higher scores than

k-medoids, and (2) applying UMAP before clustering results in higher scores. It is important to

note that clustering based on the reduced UMAP embeddings effectively alters the underlying
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Fig. 10: Visualisation of 120 image embeddings using UMAP for the selection of key frames

from an example video. (a) k-means clustering with 6 clusters, (b) k-medoids clustering with 6

clusters, (c) k-means clustering of UMAP reduced embeddings with 5 clusters, (d) k-medoids

clustering of UMAP reduced embeddings with 6 clusters, (e) silhouette scores by k for each

method.

data representation and computed distance values. As a result, the silhouette scores are not

directly comparable to those of the original embeddings. Nevertheless, most scores are above

zero, suggesting the clustering process retains some meaningful structure.
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Fig. 11: Highest silhouette scores for videos in datasets A, B, and C using k-means and k-medoids

clustering with and without UMAP reduction.

3) Dataset Key Frames: Table IV summarises the key frame counts for each dataset using

our various selection methods. For comparison, we have included the image counts from our

previous study’s heuristic method [20]. The results from our proposed methods show that across

all datasets, the “Random 5” selection yields the smallest number of key frames, “k-means

(UMAP)” generates the largest number of key frames for datasets A and B and “k-medoids”

the largeest number for dataset C.

Comparing our proposed methods to our previous heuristic-based method, we find that the

frame counts are generally comparable in datasets A and C. However, in dataset B, our new

methods generate 3-6 times more frames. We attribute this discrepancy to the different frame

selection rates during the heuristic-based work. During that study, on average, we selected 6-7

frames per video in datasets A and C (with 128 and 517 videos, respectively). However, dataset

B had a notably larger quantity of videos (1821), and we heuristically selected only 1-2 frames

per video.

C. Similarity Matching

1) Image Embeddings of Key Frames: We created image embeddings for our datasets of

keyframes using three different encoders – DINOv2, ResNet50, and AIMv2. To establish the

quality of the embeddings, we visualised the results for dataset A by reducing the embeddings

to 2-D using UMAP. The embeddings produced by k-means clustering are shown in Fig. 12

while those from k-medoids are presented in Fig. 13. Labelled data is not used in clustering
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TABLE IV: Count of Key Frames by Dataset and Selection Method

Selection Method Dataset A Dataset B Dataset C

k-means 816 13,502 4,221

k-medoids 921 13,866 4,720

k-means (UMAP) 1,590 19,362 4,006

k-medoids (UMAP) 962 12,118 4,056

Random 5 640 9,105 2,585

Random 7 895 12,747 3,619

Heuristic [20] 795 2,910 2,996

but for visual clarity we assign a distinct colour to each labelled bird. From these figures,

we can make two key observations – (1) k-medoids may tend to produce marginally more

separated and defined clusters for each bird label compared to its k-means counterparts (despite

weaker silhouette scores), and (2) among the three encoders, DINOv2 appears to create the

best embeddings, while AIMv2 performs the worst. Given DINOv2’s superior performance, we

focused on this model for further analysis.

Figure 14 visualises the embeddings of k-means and k-medoids after applying UMAP re-

ductions and the Random 5 and Random 7 selections of key frames. The results suggest that

during the key frame selection step applying UMAP may not significantly impact clustering

quality as the embeddings appear neither better nor worse than their non-UMAP counterparts.

Furthermore, even random selection produces relatively well-defined embeddings. (Visualisations

of the DINOv2 embeddings for datasets B and C are given in Fig. 15 and Fig. 16 of Appendix

B).

Therefore, from a visual inspection of the embeddings, which is not strongly supported by

the silhouette scores, we find there is little evidence to support a difference between k-means, k-

medoids, their UMAP counterparts, and random selection. We address this further in Section V-F

with results of statistical testing.

2) Accuracy of Image Matching: The accuracy of our similarity matching in identifying

individual kākā within images are presented in Table V. We evaluated three image encoders on

dataset A and the traditional SIFT/RANSAC approach. For datasets B and C, we used DINOv2

only, which is our best-performing encoder from dataset A. For comparison, we included metrics
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Fig. 12: Dataset A image embeddings for key frames from k-means clustering using DINOv2,

ResNet50, and AIMv2.

Fig. 13: Dataset A image embeddings for for key frames from k-medoids clustering using

DINOv2, ResNet50, and AIMv2.

Fig. 14: DINOv2 Image embeddings for Dataset A key frames from UMAP reduced k-means

and k-medoids clustering (top row), and Random 5 and Random 7 (bottom row).

from our heuristic key frame selection method used during our previous study. The most accurate

algorithm for each dataset is highlighted in bold font. For dataset A, the DINOv2 encoder used

on key frames selected via k-medoids clustering on the reduced UMAP embeddings achieved the

highest accuracy of 96.2%. Continuing with the DINOv2 encoder, the k-medoids algorithm using

the original image embeddings emerged as the top performer for datasets B and C both with
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98.6% accuracy. Notably, the performance difference over all proposed methods was relatively

marginal.

TABLE V: Accuracy of Image Matching

Dataset Encoder k-means k-medoids k-means k-medoids Random Random Heuristic

(NLDR) (NLDR) 5 7

A DINOv2 93.9 92.9 95.5 96.2 94.5 95.3 93.8

ResNet50 89.0 92.2 93.5 93.2 90.5 91.1 90.8

AIMv2 84.4 86.9 89.6 88.8 87.2 87.9 81.9

SIFT 81.0 87.4 81.9 88.9 86.3 87.3 85.9

B DINOv2 97.8 98.6 98.5 98.4 97.8 98.0 97.8

C DINOv2 96.4 98.6 97.6 97.2 96.6 96.9 97.6

D. Evaluation

The accuracy of our methods in identifying individual kākā within videos using results from

the DINOv2 image matching is presented in Table VI. Results are reported for the evaluation

function f using the threshold approach and majority voting. We highlight the highest accuracy

for each dataset in bold font. Across all datasets, voting outperforms our threshold approach.

The accuracy of key frame matching shown previously in Table V showed little variation across

methods and hence to identify an individual in a video Table VI shows the random selection

methods are competitive with our clustering-based approaches, with each improving upon the

previous heuristic-based selection method.

When evaluating the performance of different methods to select key frames from videos,

we must balance the trade-off between the number of key frames produced and the accuracy

achieved. For example, in Dataset A, applying k-means to UMAP-reduced embeddings (1,590

images) generated nearly twice as many frames as using k-means without UMAP reduction

(816). However, the video accuracy was the same for both methods (97.7%)

E. Similarity Matching Against a Partially-Labelled Dataset

The image matching results using the partially-labelled dataset are presented in Table VII.

Our findings indicate that SIFT without masking achieves an overall accuracy of 65.3%, which
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TABLE VI: Accuracy of Re-Identification in Videos using DINOv2

Dataset Eval. k-means k-medoids k-means k-medoids Random Random Heuristic

Fn. f (UMAP) (UMAP) 5 7

A 60% 96.1 95.3 95.3 98.4 98.4 97.7 95.3

80% 93.0 94.5 93.8 94.5 94.5 94.5 90.6

Voting 97.7 96.1 97.7 98.4 98.4 98.4 95.3

B 60% 98.6 99.0 99.0 98.8 99.0 98.7 97.4

80% 97.3 98.5 97.7 98.2 98.1 97.1 97.3

Voting 99.3 99.3 99.3 99.2 99.2 99.3 97.9

C 60% 97.7 98.6 98.6 98.3 98.6 97.9 97.5

80% 95.7 98.1 97.1 97.3 97.1 96.7 95.6

Voting 98.6 98.8 98.8 98.8 98.6 98.8 98.3

improves to 70.6% by including a background mask, and further increases to 78.8% with both

background and nozzle masks.

DINOv2 outperforms SIFT in the absence of masking (69.9% vs 65.3%). Yet, when intro-

ducing background-only and background-nozzle masks, SIFT outperforms DINOv2. However,

the masking used with SIFT in our the prior research was custom-designed and not easily

transferable across datasets, limiting its future application. In this experiment, we did not explore

the application of segmentation masks with DINOv2 to determine if it improved the performance

in line with that of SIFT masking.

F. Statistical Testing

We calculated the p-values from McNemar’s statistical significance tests with a Bonferonni

correction for our video matching using the evaluation function f with majority voting. The

results show that all our proposed key frame extraction methods give p-values greater than 0.05,

indicating insufficient evidence to reject the null hypothesis. Therefore, we conclude that all

methods perform equally well with a similar error rate.

However, we observe different results when comparing our proposed methods to the heuristic-

based method in our previous work, but only for dataset B. Here, we observed p-values less

than 0.05 for all our proposed methods, suggesting significant differences in performance. As
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TABLE VII: Comparative Analysis of Model Results With and Without Masks for Partially-

Labelled Dataset

(A) SIFT (B) SIFT (C) SIFT (D) DINO

Background + Nozzle Background Only No Mask No Mask

Label Total Correct Accuracy Correct Accuracy Correct Accuracy Correct Accuracy

L-MB 139 96 0.691 79 0.568 80 0.576 97 0.698

LM-G 102 65 0.637 54 0.529 46 0.451 35 0.343

O-RS 202 191 0.946 187 0.926 168 0.832 181 0.896

MR-R 57 49 0.860 45 0.790 40 0.702 41 0.719

WS-P 139 86 0.619 81 0.583 81 0.583 105 0.755

Y-GM 9 8 0.889 7 0.778 7 0.778 7 0.778

YM-Y 147 128 0.871 113 0.769 95 0.646 104 0.707

Total 795 623 0.788 566 0.706 517 0.653 570 0.699

noted earlier, only 1-2 key frames per video were selected during the heuristic-based method

for dataset B and hence re-ID for videos in dataset B was significantly less accurate using that

approach.

Our results suggest that the choice of clustering algorithm and using a dimensionality reduction

technique has a limited influence on re-ID accuracy for our datasets, as the difference in perfor-

mance is small compared to our random methods, and considered statistically non-significant.

One potential disadvantage of random selection is that it may fail to capture all bird poses within

a video, and hence, clustering may mitigate this. However, in our controlled environment, we

minimised variations in bird positioning through our setup, reducing the impact of this occurring.

In future, extending our study to include trail camera footage will help determine the effectiveness

of clustering-based approaches in more diverse environments.

G. Limitations

While our study contributes valuable research to the field of wildlife re-ID, specifically kākā,

we acknowledge several limitations. We collected our datasets in a controlled environment with

minimal occlusions, good lighting, and high-quality cameras. The footage was captured over 15

months, with each dataset spanning 1 to 3 months. Dividing the recordings into three datasets
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avoided temporal variations within each dataset and changes that may have occurred in birds

spanning multiple datasets. Another limitation is that we solely used UMAP for dimensionality

reduction and k-means and k-meloids for clustering. Although we attempted to use HDBSCAN

[66], it was not effective due to the somewhat small number of instances (kākā frames) in some

videos, and in addition, there was limited control of cluster size.

H. Future Work

Future work will entail expanding our datasets by collecting trail media to address the limita-

tions of our existing datasets and building on the concepts presented in this study. Removing high

motion frames from our set of candidate key frames was essential in improving the accuracy of

kākā video re-ID, however, we considered the Gunner-Farnebäck method was computationally

slow. Future work will focus on developing a faster, customised solution to address this limitation.

By including a fine-tuned object detection model in our pipeline, we tailored our approach

to be species-specific. As we collect more trail images, we plan to expand the model training

and fine-tune it to enhance its performance and robustness across various settings. To further

strengthen our pipeline, we intend to extend this component into a fine-tuned segmentation model

to remove all additional background noise. In addition, we aim to broaden the applicability of

our methodology by including other similar species, such as the kea or kākāpō. Our modular

pipeline design allows for seamless swapping of components, enabling easy integration of other

fine-tuned models for detecting different species, making it adaptable and scalable for future

applications.

The choice of encoder model for generating image embeddings is important, as some archi-

tectures are better suited to this task and our specific datasets than others. However, we did not

fine-tune the encoder heads to optimise the embedding spaces in this study. Doing so would have

required a labelled dataset, which we intentionally avoided using to maintain an unsupervised

approach and retain our three datasets for evaluation. However, fine-tuning with a labelled dataset

could further improve our encoders’ performance and will be explored in later studies.

In future work we anticipate lower accuracy rates with the addition of trail recordings,

providing a valuable opportunity to evaluate and refine our methodology, including alterna-

tive embedding encoders, model fine-tuning, clustering methods, and dimensionality reduction

techniques.
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VI. CONCLUSION

In this study we presented an automated AI-based pipeline for extracting key frames from

videos to improve the accuracy of re-ID of individual kākā. Our findings show that using a

fine-tuned AI object detection model to identify frames containing kākā, cropping the images

to minimise background noise, employing CV techniques to remove high-motion frames, then

selecting key frames through clustering (or random selection) produces an image dataset rich in

features and suitable for recognising individual kākā with high accuracy.

While key frame extraction has been explored in various domains, its application to wildlife

re-ID tasks is limited. Our kākā case study is an important contribution to on-going research in

this field. Using AI and computer vision, we aim to continually improve the recognition of kākā

individuals, thereby reducing reliance on traditional methods such as leg banding and manual

tracking. These conventional approaches are invasive, time-consuming, and error-prone, making

our automated AI-based pipeline a more effective and desirable alternative for re-ID and hence

monitoring and managing wildlife populations such as kākā.
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APPENDIX A

DATASET SUMMARIES FROM THE FRAME EXTRACTION STAGE

TABLE VIII: Results for Dataset A

Band Videos Total Frames Kākā Frames Low Motion Frames

L-MB 18 13,803 7,130 5,687

LM-G 16 9,080 4,686 3,734

MR-R 10 5,436 3,232 2,576

O-RS 28 12,627 6,592 5,250

WS-P 30 14,099 7,728 6,151

Y-GM 9 952 188 141

YM-Y 17 8,794 6,269 4,997

Total 128 64,791 35,825 28,536

TABLE IX: Results for Dataset B

Band Videos Total Frames Kākā Frames Low Motion Frames

-Y 680 74,780 38,713 30,264

K-WP 67 15,179 10,283 8,156

L-MB 37 4,506 2,721 2,135

L-XX 96 9,503 5,466 4,261

L-YM 39 3,011 1,665 1,284

LM-G 135 14,863 8,447 6,613

MO-R 140 27,840 19,220 15,231

MR-L 5 1,308 957 760

O-LW 145 15,208 10,260 8,049

P-XX 11 1,091 773 608

PR-K 50 4,796 2,398 1,866

W-BB 13 1,091 462 356

WX-P 249 47,233 27,095 21,423

Y-GL 133 10,228 5,619 4,354

YM-Y 21 4,274 3,027 2,399

Total 1,821 234,911 137,106 107,759
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TABLE X: Results for Dataset C

Band Videos Total Frames Kākā Frames Low Motion Frames

-Y 136 125,706 56,425 45,001

K-PW 8 4,601 1,950 1,552

KR-L 39 55,304 23,826 19,019

L-MB 24 37,241 17,410 13,906

LM-G 9 12,125 6,222 4,970

O-LW 10 14,865 8,038 6,422

OL-Y 2 1,146 319 253

RM-X 21 20,570 8,109 6,470

W-GL 71 44,016 20,751 16,523

WX-P 45 72,683 29,378 23,455

X-XX 31 19,513 9,153 7,288

XX-O 4 4,823 2,185 1,744

Y-GL 28 29,591 12,679 10,113

YM-Y 89 62,063 34,905 27,835

Total 517 504,247 231,350 184,551

APPENDIX B

IMAGE EMBEDDING VISUALISATIONS FOR DATASETS B AND C
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Fig. 15: DINOv2 Image embeddings from

Dataset B.

Fig. 16: DINOv2 Image embeddings from

Dataset C.
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[4] I. T. Dębicki, E. A. Mittell, B. K. Kristjánsson, C. A. Leblanc, M. B. Morrissey, and K. Terzić, “Re-identification of
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