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Abstract—Explainable artificial intelligence has received great
interest in the recent decade, due to its importance in crit-
ical application domains such as self-driving cars, law and
healthcare. Genetic programming is a powerful evolutionary
algorithm for machine learning. Compared with other standard
machine learning models such as neural networks, the models
evolved by GP tend to be more interpretable due to their model
structure with symbolic components. However, interpretability
has not been explicitly considered in genetic programming until
recently, following the surge in popularity of explainable artificial
intelligence. This paper provides a comprehensive review of the
studies on genetic programming that can potentially improve
the model interpretability, both explicitly and implicitly, as a
byproduct. We group the existing studies related to explainable
artificial intelligence by genetic programming into two categories.
The first category considers the intrinsic interpretability, aiming
to directly evolve more interpretable (and effective) models by
genetic programming. The second category focuses on post-
hoc interpretability, which uses genetic programming to explain
other black-box machine learning models, or explain the models
evolved by genetic programming by simpler models such as linear
models. This comprehensive survey demonstrates the strong po-
tential of genetic programming for improving the interpretability
of machine learning models and balancing the complex trade-off
between model accuracy and interpretability.

I. INTRODUCTION

Genetic Programming (GP) [1], [2] is a powerful evolu-
tionary algorithm for automated programming. It has been
successfully applied to a variety of machine learning tasks [3]
such as classification [4], [5], regression [6], [7], clustering [8],
[9], reinforcement learning [10]–[13] and automatic heuristic
design [14], [15]. The evolved GP models can make accurate
predictions or make effective decisions.

There has been extensive research into improving the per-
formance of GP from various perspectives such as the test
performance (e.g., prediction accuracy on unseen test data) and
training efficiency (i.e., training time and convergence speed).
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Recently, improving the explainability or interpretability of
machine learning models through GP has attracted heightened
research focus as the importance of eXplainable Artificial
Intelligence (XAI) continues to increase.

There are several reasons to consider explainabil-
ity/interpretability of machine learning [16]. First, it is impor-
tant to be able to identify and avoid “Clever Hans” predictors,
which exploit tricks and misuse the coincidental patterns that
happened to exist in the training data but cannot generalise
[17]. A good example is the image classifier that learns to
distinguish husky dogs and wolves in images by checking for
the presence of snow in the background of images, simply
because the training data consisted of many images of wolves
in the snow [18]. Second, in many applications, preserving
the trust and confidence in a machine learning system is
paramount. For example, an automatic bank loan approval
system must be able to provide the reasons for declining a
loan application to satisfy the applicant and ensure fairness and
transparency. It was horrifying to find that the COMPAS sys-
tem makes racially-biased recidivism predictions [19]. In other
areas where safety and reliability are non-negotiable, such as
self-driving cars and manufacturing industries, explanations
can help predict the mistakes the system may make, avoiding
disastrous accidents. Third, there are increasing legislative
requirements for explainability. For instance, the European
Union’s General Data Protection Regulation (GDPR) [20]
requires that machine learning models must be able to be
explained. For example, the use cases of credit scoring and
medical imaging are used in [21] to highlight the challenge
for machine learning models to meet the GDPR requirements.
Finally, explanations can provide new insights and discover
new knowledge beyond those found by human scientists. In
the Go competition between AlphaGo and Lee Sedol, the
AlphaGo made a move that appeared useless to professional
human players but turned out to be critical to the final win.
Explaining such a move would provide new insights into the
strategy and structure of the game. Scientists not only want
to achieve good performance but also want to know “why”
and “how”; from an engineering point of view, users want
to understand how solutions/models function step-by-step to
complete a (complex) task. XAI research has seen a rapid
growth in recent years, with a range of XAI survey papers
[22]–[27]. However, these papers mainly focus on the general
concepts of XAI or on specific techniques in deep neural
networks.

As a major evolutionary machine learning approach, GP has
made significant contributions to the AI and machine learning
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fields, and has a great potential to contribute to XAI. With its
symbolic nature, GP, with tree-based [2], linear [28], [29] or
graph [30], [31] representation, has an inherent interpretability
that is consistent with how a human understands the structure
of a computer program. Moreover, strongly-typed GP [32] and
the use of grammar [33], [34] constrain the model structure
and avoid the less meaningful programs so that the obtained
GP models tend to be more interpretable.

Note that there are other inherently interpretable models
such as decision trees and rule sets. Typically, these models are
built by some greedy heuristics. For example, the well-known
C4.5 algorithm [35] builds the decision tree recursively. For
each node, it selects a feature that can best distinguish the
training data (e.g., with the highest normalised information
gain). In contrast, GP has a higher flexibility, and can learn
more accurate models by searching in a richer model space.
For example, GP has been successfully used to learn decision
trees [36]–[39], rule sets [40]–[42] and fuzzy pattern trees
[43]–[47]. Overall, GP is a promising XAI technique due to
its inherent interpretability and capability to better learn other
interpretable machine learning models.

However, this natural/built-in interpretability is not enough
when addressing complex problems, and the evolved GP
models are typically too large to be interpreted. Therefore,
it is necessary to factor interpretability into the design of
GP algorithms, in order to learn GP models that not only
perform useful tasks (e.g., prediction, recognition, and decision
making) but can also explain their decision-making. This
enables users to understand the inner mechanism of the model,
its strengths and weaknesses, when and in which situations it
may make mistakes, and even how to further improve it.

There have been many studies in GP that consider im-
proving explainability and interpretability. Recent work has
explicitly considered explainability, whereas older work im-
plicitly improved explainability as a byproduct of improved
search/learning algorithms. However, so far, there has been
no survey that summarises the progress in XAI by GP and
identifies challenges and opportunities in the field.

This paper fills this gap by providing the first survey
on achieving better machine learning model interpretability
through GP. The major contributions of this paper are as
follows:

• For GP researchers, this paper provides a summary of
how to improve the explainability and interpretability of
the evolved GP models.

• For general AI and machine learning researchers, this
paper demonstrates the potential to achieve better XAI
by using a GP approach.

• For practitioners with their real-world prediction and de-
cision making tasks, this paper can provide interpretable
solutions (i.e., models obtained by GP-based approaches)
for solving their tasks.

We performed a comprehensive literature review by search-
ing the databases of IEEE Xplore, ACM Digital Library,
Elsevier, Springer, and the GP bibliography (http://gpbib.
cs.ucl.ac.uk/). We used the keywords of “genetic program-
ming”, “explainability”, “interpretability”, “explainable”, “in-
terpretable”, as well as related keywords, including “program

Fig. 1. The number of publications related to XGP over the years since 1995.

size”, “bloat”, “model complexity”, “feature selection”, “sim-
plification”, “grammar” and “decision tree”.

For the sake of convenience, we will call the research direc-
tion of achieving better eXplainable machine learning models
by GP as XGP. Fig. 1 shows the number of publications related
to XGP over the years from 1995. The figure shows a clear
and rapid increase in the number of publications over the
recent five years, demonstrating the current growth of the XGP
research direction.

The rest of the paper is organised as follows. Section II
introduces relevant background, including fundamental XAI
concepts and a taxonomy of XGP approaches. Then, Sec-
tion III reviews the intrinsic XGP approaches that directly
take explainability into account during the training for more
explainable GP models. Section IV describes the post-hoc
XGP approaches that improve interpretability at the end of the
learning process. This includes both approaches of evolving
interpretable GP models that explain other pre-trained black-
box models; and using simple interpretable models such as
linear regression to explain a pre-trained complex GP model.
Section V shows how visualisation techniques can be used to
improve GP interpretability and how GP itself can produce in-
terpretable visualisations. Section VI summarises the existing
real-world applications of interpretable GP. Section VII details
challenges and possible future directions for XGP. Finally, the
paper is concluded in Section VIII.

II. BACKGROUND

In this section, we first describe the important concepts and
terms for XGP and the position of XGP within the general XAI
area. Then, we provide the taxonomy of the XGP approaches.

A. Important Concepts

There have been a variety of similar concepts and terms
for explanations used in the existing literature, such as under-
standability, comprehensibility, interpretability, explainability,
and transparency. Barredo et al. [26] gave the definitions of
these terms to distinguish between them. Lipton [48] described
different levels of transparency in machine learning models:
simulatability, which reflects how well the model simulates
the human thinking process; decomposability, which indicates
how well the model can be decomposed to smaller human-
understandable modules; and algorithmic transparency, which
expresses if the user can understand the process of the model
from taking a possible input to returning the final output.

http://gpbib.cs.ucl.ac.uk/
http://gpbib.cs.ucl.ac.uk/
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Despite the subtle differences in their definitions, the above
terms — especially explainability and interpretability — are
often used interchangeably in the literature. As this paper is fo-
cused on surveying the breadth of XGP techniques rather than
XAI concepts, we too use explainability and interpretability
interchangeably in this paper.

Defining the criteria to evaluate the quality of an explanation
is still an open research area, and it involves considerations
from various fields outside of computer science, such as psy-
chology, cognitive science, and philosophy [22], [49]. Miller
[50] considered the qualities of a good explanation from a
social science perspective. For example, he argued that a
good explanation should be contrastive (“Why A rather than
B”), selected (focusing on only one or two causes/features
rather than all the possible causes/features) and social (e.g.,
presented as a conversation). In addition, he suggested a
good explanation should not have associated probabilities.
Doshi-Velez and Kim [49] gave a taxonomy of interpretability
evaluation, which consists of the following three levels:

1) Application-grounded: where a human directly evalu-
ates the explanation on a specific task that the model
is trained for (e.g., medical diagnosis, face recognition),
often using visualisation and human-computer interac-
tion. For example, surveying doctors as to how easily
they can understand the explanation produced by an AI
diagnostic system.

2) Human-grounded: conducting human experiments to
evaluate the explanation. For example, in a forward
simulation, given an explanation and an input, it checks
how well humans can replicate the output of the sim-
ulation based on the explanation. In the counterfactual
simulation experiment, given an explanation, an input
and an undesired output, humans are asked how they
could alter the input to change the prediction to the
desired output. This is essentially evaluating the model
simulatability defined in [48].

3) Functionally-ground: designing proxy metrics (e.g.,
model representation and complexity) of the model that
attempt to reflect its interpretability. For example, deci-
sion trees tend to be more interpretable than deep neural
networks. After the proxy metrics have been designed,
the problem becomes an optimisation task, which aims
to optimise both the model quality (e.g., classification
accuracy) and proxy interpretability metrics.

Among the above three evaluation approaches, the
application- and human-grounded evaluations require active
human feedback and thus are more time consuming and
expensive than the functionally-grounded evaluation. However,
it is extremely challenging (if not intractable) to design a
proxy metric that can capture all the relevant factors needed
for ensuring human-interpretable explanations. So far, most
existing studies focus on the functionally-ground evaluation
approaches, due to their lower “barrier to entry”.

Gunning and Aha [51] argued that there is a trade-off
between learning performance and explainability, and give a
notional graph of such trade-off for various machine learning
models. Fig. 2 shows the trade-off of some representative

Fig. 2. The trade-off between learning performance and explainability of
some representative machine learning models, adapted from [51].

Fig. 3. The main stages in solving a machine learning problem where
interpretability is important, adapted from [52].

machine learning techniques/models adapted from [51].
Murdoch et al. [52] proposed a Predictive, Descriptive,

Relevant (PDR) framework with three desiderata for evaluat-
ing and constructing interpretations, i.e., predictive accuracy,
descriptive accuracy, and relevancy. The predictive accuracy
of a machine learning model measures how accurate the model
approximates the underlying relationship in the data. Then, the
model may be interpreted by an interpretation method, and
the descriptive accuracy measures how well an interpretation
method captures the relationships learned by the model. An
interpretation is defined as relevant if it provides insight for a
particular audience into a chosen problem domain [52]. The
relevance is typically judged by human users.

Based on the PDR framework, the XAI methods are grouped
into the model-based interpretability (also called intrinsic
interpretability [25], [53]) methods and post-hoc interpretabil-
ity methods. Fig. 3 shows the main stages of solving a
machine learning problem where interpretability is important,
adapted from [52]. The intrinsic interpretability methods are
used during the training process to train more interpretable
models, e.g., by choosing an inherently interpretable model
such as decision trees. The post-hoc interpretability methods
are applied after the model has been trained. They typically
learn a more interpretable model to approximate the behaviour
of the trained model. The intrinsic interpretability methods
generally increase the descriptive accuracy, but may decrease
the predictive accuracy. On the other hand, the post-hoc inter-
pretability methods have no effect on the predictive accuracy,
but increase the descriptive accuracy [52].
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The intrinsic and post-hoc interpretability methods have
their own pros and cons, and might be used in different scenar-
ios. For example, it is important to use intrinsic interpretability
methods to obtain inherently interpretable models for making
high-stakes decisions [54], [55]. This can be achieved when
the different machine learning models perform similarly on
the dataset (the Rashomon set is large [55]).

B. Taxonomy

Fig. 4 shows the taxonomy of common XGP approaches.
Based on the stage to be used in the maching learning problem
solving process [52], we group the XGP approaches into
intrinsic interpretability, post-hoc interpretability and visuali-
sation XGP approaches.

The intrinsic interpretability XGP approaches consider the
model interpretability during the model training process, aim-
ing to obtain a self-explanatory GP model directly. This is the
main category of XGP methods, with the largest number of
studies (189 out of 217, or 87% of the XGP references in this
survey). These include both the recent studies that explicitly
consider interpretability of the evolved GP models and pre-
vious studies that can implicitly improve the interpretability
of the evolved GP models as a “bonus”. According to how
the interpretability is measured, we further divide the intrinsic
interpretability XGP methods into that with smaller GP model
size, lower (non-size) GP model complexity, fewer distinct
features in GP models, interpretable GP (sub)-model struc-
tures, and those learning GP model interpretability measures.
Note that model size is a special type of model complexity;
however, there are a large number of studies on reducing model
size (e.g., bloat control). Thus, we separate the methods with
smaller model size from other non-size complexity measures
to have a dedicated review in this area.

The post-hoc interpretability XGP approaches are applied
after a high-quality but complex black-box model has been
trained. They use a second, more explainable, model to ap-
proximate the behaviour of this black-box model. Specifically,
the global interpretability approximates the behaviour on all
the possible instances, and the local interpretability approxi-
mates the behaviour on a given single instance.

Visualisation is a natural way to improve interpretability.
The visualisation XGP approaches are divided into the visu-
alisation by GP (e.g., using GP for dimensionality reduction
to facilitate data visualisation) and visualisation for GP (using
visualisation tools to interpret the GP models/process).

III. INTRINSIC INTERPRETABILITY XGP METHODS

The intrinsic interpretability XAI approaches aim to obtain
more interpretable models without losing accuracy, typically
by selecting an inherently interpretable model. Although GP
models are already inherently interpretable, most existing GP-
evolved models are still too large and complex to be inter-
preted. To further improve the interpretability, a key question
is how to measure the interpretability of GP models. Based
on existing studies, a GP model should usually be more
interpretable if it has one or more of the following properties:

Fig. 4. The taxonomy of the XGP approaches.

• The GP model has a smaller size, e.g., fewer nodes in
the tree-based representation. This leads to fewer steps
for simulating the model behaviour by a human user, and
thus better simulatability.

• The GP model has a lower (non-size) complexity, e.g.,
with simpler functions and flatter/shallower tree structure.
This also leads to better simulatability.

• The GP model uses fewer distinct features, containing
fewer concepts to comprehend when interpreting the
model.

• The GP model has more interpretable model structures,
such as following some grammar (e.g., speed plus speed).
This leads to better decomposibility and simulatability.

In addition, one can learn new interpretability measures for
GP models through questionnaires, and use them as fitness
functions to evolve more interpretable GP models.

In the following, we will review each of the above types of
methods one by one.

A. Smaller GP Model Size

Reducing GP model size is not a new research direction,
and numerous studies have been conducted, which is known
as bloat control [56]. It has been observed that the GP model
size tends to grow rapidly as the evolution proceeds, leading to
unnecessarily large models with many redundant components
[57], [58], and extensive studies have analysed the causes
of bloat [59]–[61]. Bloat control aims to reduce model size
without (significantly) decreasing accuracy.

To reduce GP model size, one can modify different stages in
the GP process. Fig. 5 shows the common strategies to reduce
GP model size, and to which stages they can be applied.

1) Depth/Size Limit: Directly limiting the model size (e.g.,
tree depth for tree-based GP and number of instructions for
linear GP) is the most straightforward method to control model
size. This can be applied in initialisation, offspring generation
and environment selection. With the predefined limit, we can
design initialisation and genetic operators to generate only
offspring within the limit, or simply discard any generated
individual that exceeds the limit.

It is non-trivial to find a proper fixed limit to balance
between the model accuracy and size. To address this issue,
the work in [61] adjusts the limit dynamically based on the
population distribution. The limit is initialised to a small value.
During the GP process, an offspring exceeding the limit is
discarded unless it is the new best individual [62]. The limit
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Fig. 5. The common strategies to reduce GP model size, and to which stages
in the GP framework they can be applied.

TABLE I
PARSIMONY PRESSURE STRATEGIES USED IN DIFFERENT STAGES OF GP.

Stage in GP Strategy References
Fitness Evaluation Fitness with penalty [69]–[75]

Parent Selection
Pareto-based

multi-objective
[76]–[91]

Lexicographic [92], [93]
Double tournament [94]

is also increased to the depth/size of the new best individual.
On the other hand, if the new best individual has a smaller
depth/size, the limit can also be decreased accordingly [63].

Other works use fixed-size model templates, such as Carte-
sian GP [31] with fixed number of rows and columns of nodes,
or a full r-ary tree with depth d [64], [65]. The depth/size of
the template is the limit. Note that any node in the template can
be the terminal, thus the actual model size can be smaller than
the limit. Existing studies (e.g., [66], [67]) have shown that
Cartesian GP is lack of bloat and can obtain more interpretable
models than other models such as decision tree [68].

2) Parsimony pressure: The parsimony pressure methods
are based on the idea of penalising large models during the GP
process, mainly used in fitness evaluation and parent selection.

Table I shows the parsimony pressure strategies used in
different stages of GP. In fitness evaluation, a typical strategy
is to add a penalty term to penalise large individuals. The
augmented fitness function g is defined as g = f+p(s), where
f is the original fitness function (e.g., mean squared error), s
is the model size (e.g., number of nodes in the GP tree), and
p(s) is the penalty term related to s.

Common strategies to define p(s) include the death penalty
and linear penalty. The death penalty strategy sets an infinitely
bad fitness to large individuals (e.g., whose size are larger than
the average size of the population [69]).

The linear penalty strategy [70] defines p(s) = β×s, where
β is the penalty coefficient. A proper β value is critical to

balance between model accuracy and size. If β is large enough,
then the size is used to break the tie between two models with
the same accuracy (e.g., [71]). Existing studies set it to a fixed
value based on domain knowledge/trial-and-error (e.g., [70],
[72]–[74]) or change it adaptively based on the accuracy and
size of the current best individuals [75].

We can also consider parsimony pressure during the parent
selection. Multi-objective techniques have been commonly
used for this purpose. It simply treats minimising the model
size as an additional objective, and uses the multi-objective
parent selection schemes such as the ones used in NSGA-II
[80], [81], [85] or SPEA2 [77]–[79]. The advantage of multi-
objective techniques over the penalty strategy is that we can
obtain a comprehensive set of models with different trade-offs
between accuracy and complexity for users to select from.

When using multi-objective techniques for parsimony pres-
sure, an issue is that the search tends to bias towards small
models [79], but can hardly find individuals with good fitness,
since they generally have large size. To address this issue,
some works [79], [81] enhance the population diversity to
reduce the number of small individuals in the population.
Other works [89]–[91] use the α-dominance instead of the
traditional dominance relation to balance between the fitness
and model size. Another common approach is to use a two-
stage search process, where the first stage focus only on the
fitness, and the second stage takes model size into account
[76], [86]–[88].

Instead of treating fitness and size as equally important,
the lexicographic parsimony pressure methods [92], [93] treat
the fitness as the primary objective and model size as the
secondary objective. When comparing two individuals during
the parent selection (e.g., tournament selection), an individual
is considered to be better if (1) it has a better fitness or (2) it
has the same fitness but smaller size.

As an extension of the lexicographic parsimony pressure
methods, the double tournament selection [94] selects the par-
ents through a “qualifier” tournament and a “final” tournament.
They are based on parsimony and fitness, respectively, or
vice versa. The contestants for the “final” tournament are the
winners of the “qualifier” tournament.

3) Genetic operators against bloat: Instead of randomly
generating offspring and discarding/penalising large ones,
another alternative is to design specific genetic operators
to actively generate small offspring. A common idea is to
make the offspring have similar structure as the parents. For
example, in tree-based GP, for crossover, we can select only
the sub-trees that inherit the same structure of the upper part
of the parents (e.g., one-point crossover [95], [96], as shown
in Fig. 6) or with similar size (e.g., size-fair crossover [97]).
We can also consider both the sub-tree size and the common
structure they inherit (e.g., Homologous crossover [97]–[99]).
For mutation, we can mutate the value of a single node instead
of replacing a sub-tree (e.g., point mutation [96], [100]) or
control the newly generated sub-tree so that its size is not
much larger than the replaced sub-tree (e.g., size-fair mutation
[101] and the prune and plant operator [102]).

Another strategy for linear GP [103] considers each in-
dividual (a sequence of instructions) as a number of blocks
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Fig. 6. The one-point crossover to control model size. The thick lines show
the common structures of the parents. The sub-tree neg(y) from parent 1 and
y − x from parent 2 are swapped, as they inherit the same structure of the
upper part of the parents.

of instructions (so-called “pages”), each with a fixed number
of instructions. The crossover swaps a single block (page)
between the parents. This way, the size of the individuals are
not changed after crossover.

4) Model size distribution control: The above strategies
mainly work at the individual level. In contrast, the model
size distribution control strategy works at the population level
to control the distribution of model size in the GP population.
It is generally used in the parent selection and environment
selection stages.

For parent selection, a typical method is the use of external
archive, which stores small and high-quality individuals (de-
signed by users [104] or selected from previous populations
[105]). By selecting parents from the archive, there will be
more small offspring generated in the population. Another idea
is to use the niching technique to divide the population into
species, and conduct crossover between parents in the same
species (e.g., the Spatial Structure + Elitism Model [106],
[107], neat-GP [108], [109] and parallel GP [110]). This has
shown to be effective to control bloat implicitly.

For environment selection, a commonly used strategy is the
operator equalisation [111]. It predefines a target distribution
of model size in the population (e.g., uniform distribution
[112], [113]). The probability of accepting a new offspring
depends on how much the offspring will drive the current
distribution towards the target distribution [112]. Further ex-
tensions including adapting the target distribution during the
GP process [114] and mutating the offspring to fine-tune the
distribution [115].

5) Explicit Simplification: Compared with the aforemen-
tioned strategies that modify/enhance the existing GP steps,
the explicit simplification strategy [116] is an extra post-
processing step to prune the redundant parts of GP individuals.

For simplifying GP models, the key issue is to balance
between the model size and using redundancies to protect
the truly useful building blocks from being destroyed [59].
Specific decisions include (1) “when” to simplify, (2) “which
individuals” to simplify, and (3) “how” to simplify. There have
been various strategies to address these design issues, which
are summarised in Table II.

TABLE II
THE STRATEGIES FOR GP WITH SIMPLIFICATION REGARDING “WHEN”,

“WHICH INDIVIDUAL” AND “HOW” TO SIMPLIFY.

Decision Strategy References

When
Every generation [2], [117]–[122]
Final generation [2], [123], [124]

At certain interval [119],
[125]–[128]

Which individuals

All individuals in the
population

[2], [119], [122],
[125]–[127]

The best individuals
in the population

[2], [121], [123],
[124], [128]

Randomly with some
probability

[117]

The parents for
breeding

[118], [120]

How
Genotypic
(Structural)

[2], [117]–[119],
[122], [123],
[125]–[127],
[129]–[131]

Phenotypic
(Behavioural)

[120], [121],
[124], [126]–[128],

[132]–[135]

Regarding “when” to simplify, the commonly used strate-
gies are based on frequency (i.e., after every k generations).
If k = 1, then the simplification is conducted after every
generation. If k equals the number of generations, then the
simplification is applied only to the final individuals after the
whole GP process.

Regarding “which individuals” to simplify, the commonly
used strategies mainly include (1) all the individuals in the
population; (2) the best individuals in the population; (3)
randomly selected individuals; and (4) the parents for breeding
(use the simplification as a special operator [118] or simpli-
fying the parents before the genetic operator [120]).

The decisions on “when” and “which individuals” to sim-
plify should be made together to balance between model size
and protection of useful building blocks. For example, if the
simplification is applied in every generation, then we should
not simplify all the individuals in the population.

Regarding “how” to simplify the individuals, the existing
strategies can be divided into genotypic and phenotypic simpli-
fication approaches. The genotypic simplification approaches
directly simplify the model based on its structure. The most
straightforward way is to use existing basic algebraic simpli-
fication rules, such as x − x → 0 and x/x → 1 (e.g., [117]–
[119], [125], [129]). If domain knowledge is available, we can
develop more simplification rules, e.g., max{x, x − y} → x
if the variable y is always positive [122]. Hashing has been
employed to speed up the simplification [119], [131].

The phenotypic simplification approaches simplify pro-
grams based on behaviour, i.e., it replaces a large sub-tree with
a smaller one with similar behaviour. An intuitive approach
arbitrarily changes the model to make it smaller. If the model
behaviour is not significantly changed, then the original model
is replaced by the smaller one [132], [134], [135]. Also, a part
of the model can be pruned if it is never executed during the
model evaluation [136]. A more advanced strategy in tree-
based representation is to consider sub-tree contributions. For
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example, if there is always little difference between the output
of a sub-tree and that of its child, then the sub-tree can be
replaced by that child [120], [126], [127]. Permutation test is
also commonly used to estimate the contribution of a sub-tree
(e.g., [124], [128], [137]). If the overall model output is not
affected by shuffling the output of a sub-tree, then the sub-tree
can be pruned. This is generally more accurate but slower than
directly checking the outputs. Another approach is to replace
a sub-tree with a smaller sub-tree with similar semantics as
the replaced one [133]–[135] or the desired semantics back-
propagated from the root node [121].

B. Lower (Non-size) GP Model Complexity

Model size reflects only a narrow aspect of interpretability,
and it is highly likely to have a small but uninterpretable model
with complex operators (in combinations with features). To
address this issue, various model complexity measures have
been developed to consider the complexity of GP models
beyond model size.

Model complexity measure and control methods in GP can
be broadly grouped into two categories: structural and be-
havioural/functional complexity. These two types of methods
will be reviewed below.

1) Structural Complexity Reduction: The structural com-
plexity of models contributes directly to the interpretability of
models. Intuitively, a model with a simpler structure should
be more comprehensible on feature importance, feature inter-
actions, and the process of prediction inference.

Apart from the most straightforward and commonly used
structural complexity measure, i.e., model size that has been
reviewed in Section III-A, a number of structural complexity
measures and control methods have been proposed in the last
two decades. Many structural complexity measures consider
the shape of the GP trees and distinct the complexity between
balanced and skewed trees with the same size. Some com-
plexity measures share the same idea, e.g., the expressional
complexity [138] and the visitation length [139]. They both
define the complexity as the sum of nodes in all the subtrees,
thus consider flatter trees with fewer nested function nodes less
complex than deep unbalanced trees. A structural complexity
presented in [140] recursively aggregates the complexity of the
nodes underneath each internal node according to its function.
Therefore, with their measure, the total complexity of a GP
model is heavily dependent on the level/depth of internal nodes
with more complicated functions, for example, the complexity
of a node with a complicated function, e.g., “sin”/“cos”/“exp”,
increases exponentially with the size of the subtree rooted
on the node. These complexity measures can be utilised in
designing new fitness functions and/or genetic operators to
prefer and generate simpler models, and by multi-objective
GP methods to generate models with a good complexity-
performance trade-off. It is much easier for users to pick up
models with the right level of complexity for further analysis
or deployment.

Another group of GP methods seeks simpler models in
their structure with some novel representations. A fixed model
structure with adaptive weighted splines was presented in

[141], where each GP model is composed of a number of
feature splines. The proposed semi-structured GP method no
longer fully presents the symbolic capability of GP, but the
models developed can be regulated far more easily, thus
are simpler and potentially easier to interpret. The work in
[142] incorporates an epigenetic layer to specify active genes
in linear GP with stack-based representation that has the
advantages of guaranteeing syntactic validity regardless of the
change to GP models.

2) Functional Complexity Control: Perfectly accurate mod-
els are often obscure and infeasible to convince process engi-
neers in industry who deploy and use the models [143], thus
it is necessary to measure and control functional/behavioural
complexity for more interpretable GP models.

To discourage GP models with highly nonlinear behaviour,
various functional complexity measures and control methods
have been developed. Some measures approximate the func-
tion/behaviour of GP models with a simple structure, e.g.,
Chebyshev polynomial [143]. The degree of the polynomial is
then treated as the complexity of GP models. By minimising
the functional complexity along with the modelling errors,
GP can produce models with smoother response space and
easier to interpret. Different from approximating the function
represented by GP models, another group of methods directly
work on the function itself and proposed various indicators of
the nonlinearity of GP models. Some typical measures used in
previous research are described as follows. The curvature of
functions [144] counts the number of different slopes while
assigning higher weights to inversions in the slope signs.
[145] further develops this idea and quantifies the degree
of curvature by the correlation between two vectors; one
contains the pairwise distances between the input data and
the other one contains the corresponding pairwise distances
between the predicted outputs. For a rugged function, there is
no correlation between its inputs and outputs. The Tikhonov
regularisation, which takes norm operators of the function
in a Hilbert space, measures the smoothness of GP models
from different aspects such as extreme values, ruggedness and
wiggliness [146]. Another one is the Vapnik–Chervonenkis
(VC) dimension of the function represented by GP models
[147], [148]. VC dimension measures the complexity of model
by its ability to learn from any given data. The Hessian
complexity of GP models [149] considers the form of the
ratio of the non-constant entries in the Hessian matrix of GP
models. The partial derivatives of the model with respect to
each feature in the matrix is a good indicator of whether and
how it influences the output of the model. A further one is
Rademacher complexity [150], [151], which measures how
well the model correlates with randomly generated labels.
In its simplest form, Rademacher complexity measures the
ability of a learning model to fit random noise [150]. It
can also be as sophisticated as possible in approximating
the supremum of the correlation between the model and
Rademacher random variable [151]. Rademacher complexity
has a tighter bound than VC dimension on the generalisation
error, thus can potentially avoid oversimple models. Although
the VC dimension-based model complexity measure is precise,
it is usually complicated to calculate and very computationally
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expensive for GP with varying model structures. Another
simple but interesting idea is to measure the complexity of
GP models by the computational time required for evaluation
[152]. The evaluation time is a sensible indicator of both the
structural and functional complexities since it usually takes
longer for evaluating models made up of computationally
expensive functions and/or large structures.

3) Indirect Methods to Generate Simpler Models: Another
group of GP methods generate simpler models by reducing
overtraining. The sampling technique has shown to be ef-
fective for mitigating overtraining. At every generation, GP
individuals are evaluated on a subset of sampled training data
only. This implies only individuals that fit various subsets
well will remain in the population. These individuals are less
likely to be overtrained nor capture the noise via overcomplex
structures and/or functions. Various sampling techniques have
been employed to generate simpler models [153]–[156]. A
statically random sampling technique has been used in [153].
At every generation, GP learns from a subset of randomly
sampled training data, which contains half of the training
data while keeping the same distribution as that of the entire
training set. This was extended in [154] by adding two flexible
configurations: —the size of the sampled subsets and the
sampling frequency. The work in [155] further developed the
idea of randomly sampling a single instance for evaluation
while balancing it with periodically using the entire set of
training data. Bootstrapping is employed in GP [156] to prefer
simpler individuals. GP individuals are evaluated on a number
of bootstrap replicates, each of which is formed by repeatedly
sampling from the training data with replacement. Introducing
bootstrapping into GP gives simpler individuals a high priority
for breeding and survival, since simpler individuals usually
vary slightly on the bootstrap errors.

C. Fewer Distinct Features in GP Models

In XAI, a good explanation should be selected [50] to
reduce the causes/features to relevant ones only, which can
be achieved via feature selection. Furthermore, the original
features collected could be low-level raw information, which
requires further learning/transformation to discover a good
explanation. This can be achieved by feature construction.
Both feature selection and feature construction are challenging
because of the large search space and the complex interactions
between features, where feature construction is even harder
since it also needs to explore ways to create new high-level
features. Both the selected and constructed feature sets are
expected to be much smaller and provide insights between
features that facilitate interpretability.

GP has built-in feature selection and feature construction
ability, and implicitly and automatically takes feature interac-
tions during the learning process. Tran at al. [158] performed
an extensive investigation on this using high-dimensional
classification data. The results show that GP has the ability
to select a very small number of features (e.g., less than 1%)
while maintaining the classification performance. GP can also
construct a single new high-level feature by using only a few
original features, which were selected from a large feature set,
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Fig. 7. An example GP tree generated from the Leukemia dataset [157].
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Fig. 8. Visualisation of feature values and the class labels on the Leukemia
dataset [157].

e.g., with thousands of features, to obtain high classification
accuracy. An example GP tree is shown in Fig. 7 [157],
where the leaf nodes are the selected features. This GP tree
can also be seen as a constructed feature (i.e., M19507 at +
X61587 at - U09087 s at -U82759 at), which can separate
the two classes much better than the original four features as
shown in Fig. 8. Furthermore, the GP tree in Fig. 7 is also a
classification model, showing how the classification decision
is made (from input features/data to the output class label),
which can be potentially interpreted by users.

1) Feature Selection: Different methods have been intro-
duced to achieve feature selection in GP to facilitate model
interpretability, such as incorporating the permutation-based
feature importance measures [87], [137], [159]–[164] to eval-
uate the quality of the feature subsets, partial derivative to eval-
uate feature importance [165], and adaptive terminal selection
and bloat control methods [159]. For example, an interaction-
transformation representation is employed in [165], where the
partial derivative can be calculated to evaluate the partial
effect of a feature in a symbolic regression model (i.e., GP
individual) to avoid complex models. By restricting the search
space to simple mathematical expressions, this approach can
facilitate model explanation, shown as providing the closest
explanations to the ground-truth and a close approximation to
Shapley values (i.e., how much a feature contributes to the
deviation from a reference point).

Feature selection can also be achieved by feature ranking.
However, most existing feature ranking methods lead to re-
dundancy in the obtained feature subset due to ignoring inter-
actions between features. GP implicitly considers interactions
between features when performing feature ranking. A simple
method to measure the importance of features is based on
the frequency of a feature appearing in good GP individuals.
Ahmed at al. [166] measured the importance of features
based on their frequency of appearance in good GP models.
Experiments on biomarker detection datasets show that a
small number of top ranked features can significantly improve
the classification performance, which effectively select almost
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Fig. 9. Multiple feature construction with a multi-tree representation for a
3-class dataset, where CF1, CF2 and CF3 are the three constructed features
from the three trees [174], and each corresponds to one class.

all of the predefined biomarkers, which are key for domain
experts to explain the data. Another approach is to consider the
fitness values of the GP models that features appeared [167],
where the results show how different numbers of top ranked
features affect the classification performance, which can help
understand and explain the data and the generated GP model.
Hu [168] developed a linear GP method, where the final model
was learned by using the most frequently occurred features
from the a previous one as input, i.e., using a significantly
reduced feature set to build the model. The results showed that
the selected features can help linear GP obtain significantly
better prediction performance and more interpretable models.

2) Feature Construction: GP has been used to achieve
feature construction in many studies. Icke and Rosenberg
[169] proposed to use GP to construct a few features for
improving the classification accuracy, and their interpretability
is achieved by controlling the complexity of the features
constructed. Later, Virgolin et al. [170] proposed a similar
idea and evolve a group of crucial and compact (and thus
interpretable) features to maximise the accuracy. Nag and Pal
[171] used GP to construct features for classification, so that
the classes become linearly separable in the constructed feature
space, which facilitates the interpretability of the learned
classifiers. Peng et al. [172] applied GP to rolling bearing
fault diagnosis. Detailed analysis and visualisation show that
GP effectively constructs diverse features to capture different
patterns in the data to improve the diagnosis accuracy with
explainable tree-based models. Furthermore, most GP-based
feature construction methods use a single-tree approach [169]–
[171], which work well when the number of classes is small,
e.g., binary classification, but their accuracy or interpretability
might be limited when the number of classes is large [173].
Multi-tree GP is used to construct multiple class-dependent
features for multi-class classification [174]. As shown in Fig.
9, one constructed feature or tree corresponding to one class,
taking only features most relevant to this class as input, and
therefore can better explain how a classifier separates instances
of different classes.

Later, Ain et al. [175], [176] performed multiple fea-
ture construction using multi-tree GP with different types
of features for melanoma detection. By keeping the same
type of features in the same tree, the features selected and
constructed by GP have good interpretability, since they can
potentially match the way dermatologists make a decision.
For example, the lesion colour features selected correspond
to the geometrical shape characteristics of melanoma, such as
irregularity indices, corners and the major asymmetry index,
which are commonly used by dermatologists in clinics in

the real-world situations. Most GP methods construct features
based on the root of the tree. In addition, the internal nodes
(sub-trees) are also utilised as constructed features to improve
the performance [177], [178]. These constructed features can
potentially be interpreted as meaningful information in the
domain. In particular, the GP method in [177] can successfully
find biomarkers that are indicators of a particular disease
state or other physiological state of an organism, which are
exactly what a doctor or biologist is looking for. Lensen
[179] proposed to use GP to automatically construct the
relationship between features, which can particularly help with
the interpretable association rule mining. It showed that GP
can evolve interpretable relationships between features.

D. Interpretable GP (Sub-)Model Structures

If a GP model has interpretable model structures or mod-
ules, then it has a better decomposibility. The existing strate-
gies can be grouped into three categories: (1) interpretable
function nodes, (2) interpretable combinations between nodes,
and (3) problem decomposition.

1) Interpretable function nodes: A main reason for the poor
interpretability of deep neural networks is that the operations
(weighted sum and activation such as the Sigmoid and tanh
functions) are not interpretable. Similarly, traditional GP func-
tion nodes mainly include basic arithmetic and logic functions
(e.g., +, −, exp, min, AND, OR) with no domain-specific
meaning. To address this issue, interpretable problem-specific
function nodes can be designed to replace the less interpretable
basic functions. A typical example is GP for image processing,
where existing studies have designed various interpretable
image processing functions, such as region detection. Com-
pared with deep neural networks (DNNs), although GP-based
methods cannot easily achieve better accuracy than state-
of-the-art DNNs particularly on large-scale image datasets,
they have already achieved similar or better performance than
DNNs when the number of images is small [180]. However,
DNNs often have tens or hundreds of layers in the network
with millions of parameters, which makes it almost impossible
to interpret the learned models. In contrast, the tree structure
in GP often has a much smaller number of layers, e.g., less
than 10.

The interpretable image processing functions generally re-
quire specific inputs and outputs. Strongly-Typed GP (STGP)
[32], [181]–[183] has been used to satisfy the input-output
constraints of the operators. The use of STGP for image classi-
fication started many years ago [184], when the interpretability
of models was not in a high demand as nowadays. But those
earlier works have shown potential interpretability of GP for
image classification via the tree-based model by decomposing
the complex image classification task to relatively smaller
tasks, being addressed by different nodes of the tree.

A typical example of GP tree for image classification is
shown in Fig. 10, where the left part shows an example of a
multi-layer model structure [185]. The input of the tree is the
original image and attributes for locating a region of interest in
the image. The internal function nodes include automatically
selected image-specific operators, such as the region detection
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Fig. 10. An example multi-layer model structure [185].
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tion functions, i.e., G_SI FT , L_DI F and L_uLBP , and feature concatenation
function, i.e., FeaCon2.

The new program structure allows IDGP to have a flexible tree depth and to
produce various numbers of global and/or local features. The learned features follow
in, i.e., a combination of global and local features, a combination of global features
and a combination of local features. The global and local features can be learned by
using the image descriptors in the global and local scenarios as internal nodes to build
a GP tree. As shown in the example program in Fig.6.1b, the output features are a
combination of global SIFT features, local Domain-Independent Features (DIF) and
local uniform LBP (uLBP) features. The total number of the output features S equals
s1 + s2 + s3, where s1 is the number of the SIFT features, s2 is the number of the DIF
features, and s3 is the numbers of the uLBP features. These features are extracted
by the G_SI FT , L_DI F and L_uLBP functions, respectively. The second type
is a combination of local features, which can be achieved by using the IDGP trees
that only have image descriptors in the local scenario as internal nodes. An example
tree is shown in Fig. 6.2a that extracts a combination of local SIFT, DIF and uLBP
features. The third type is a combination of global features, which can be achieved
by using the IDGP trees that only have image descriptors in the global scenario as
internal nodes. An example tree is shown in Fig. 6.2b that extracts a combination of
global features, including SIFT, DIF and uLBP features.

It is noted that this program structure is very different from the ones proposed in
Chaps. 4 and 5. This new program structure can integrate different image descriptors
into GP trees to extract global and/or local features, while the program structures in
the previous two chapters can only learn one type of image features. With a different
program structure, different terminal and function sets are employed and described
as follows.

  !  !  !   ! !  ! !  ! ! 

Fig. 6.1 The new program structure of IDGP and an example program that describes a combination
of global and local features from an input image

7.2 The Proposed Approach 151

Fig. 7.1 The program structure of the FlexGP approach and three typical example programs

filtering layers, pooling layers, a feature extraction layer, a concatenation layer, and
an output layer. The input layer feeds the image and ephemeral random constants
into the FlexGP system. The filtering layer performs filtering operations or other
operations on the image. The pooling layer conducts max-pooling to the image
with size reduction, which is in contrast to that in [18, 29]. The feature extraction
layer extracts features from the image using several well-known feature extraction
methods. The concatenation layer concatenates/combines features from different
processes, i.e., filtering/pooling and feature extraction, into a feature vector to form
the output of the FlexGP system.

More importantly, as shown in Fig. 7.1, the layers drawn with a dashed line are
flexible, indicating that they may be or absent in an FlexGP program. These flexible
layers allow the FlexGP program to have multiple filtering and pooling layers to
extract features, which are similar to those in CNNs. The layers that are drawn with

Fig. 11. Examples GP programs for Image Classification [184].

operators (e.g., Region R to detect a rectangle region whose
top-left point has a coordinate (X,Y ) and with size defined
by Width and Height), feature extraction operators (e.g., the
Gaussian smooth filtering operation shown as Gau1, G Std
for calculating the standard deviation or any other appropriate
operators), and feature construction operator (e.g., subtraction
Sub). The right part in Fig. 10 shows an evolved tree with
the decision making process predicting the class label of the
input image (red for the example image of the Obj10 class
and green for the Obj20 class). This example GP model can
effectively detect two squares of different sizes from the input
image, which are key regions that can distinguish these two
classes. The right branch captures a top right region of the
lid, which shows to be a white rectangle in the Obj10 class
and a round corner in the Obj20 class. By selecting such key
regions to perform classification, together with other feature
extraction and construction operators, it is easier to explain
the models to end-users.

Al-Sahaf at al. [186] developed a two-tier GP method for
image classification, where the two tiers are the aggregation
and classification tiers. The former tier takes raw pixels as
input, selects regions from the image and then performs
feature extraction to convert each region to a single value
using simple operations like mean or maximum. This fa-
cilitates the interpretability by allowing the input-to-output
process being easily shown in a single GP tree. Later, a
GP method with explicit region detection, feature extraction,
feature construction and classification functions are developed
[187], where experiments on facial expression data shows
the model can be explained by selecting the key regions

in faces, e.g. the eye and corners of the mouth. Almeida
et al. [188] applied GP to the automatic identification of
regions of interest in remote sensing images by accessing the
similarity of associated time series. The GP method can find
better combinations of time series similarity functions, and
shows clearly how they are combined to achieve promising
performance. Shao et al. [189] developed a multi-objective
GP method for image classification by extracting domain-
adaptive global feature descriptors. The two objectives are
minimising the classification error and the tree complexity.
The learned GP models not only improved the classification
accuracy over hand-crafted features, but also have potentially
better explainability, since the model complexity is minimised
and the function nodes are required to extract meaningful
information from the images. Complex image classification
tasks often require various types of features to be extracted
and combined together to achieve promising performance.
Therefore, a new representation (shown as Fig. 10) is proposed
in [190], which allows GP to take raw images as input, and
automatically select and combine various functions to extract
various types of global and/or local features. Fig. 11 is more
complex than Fig. 10, but compared with DNNs, Fig. 11
still has much better potential to be interpretable, as briefly
discussed in [184].

Another example is to use GP to automatically learn de-
cision trees, where each terminal is a class label, and each
function node is a possible feature test. Early studies [36]
defined each function node as a feature, whose arity equals the
number of possible values of the feature. This has been further
extended to consider both continuous and nominal features
[38]. The function nodes can be easily interpreted from the
meaning of their features.

STGP has been used to learn more flexible oblique decision
trees [37], where each function node is defined as a test
on a linear combination of features. Specifically, a function
CondkVar is defined to test on the linear combination of
k features. Its arity is 2k + 3, where the first 2k elements
represent the weighted sum of the k features. Among the
last three elements, the first is the threshold, the second and
third are the class labels of the two branches. The number of
features in the function is limited to at most three to improve
its interpretability.

With the help of grammar, GP has also been successfully
used to evolve effective fuzzy pattern trees [43]–[47], which
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is another important inherently interpretable machine learning
model. A fuzzy pattern tree is a tree-based model, whose
inner nodes are generalised (fuzzy) logical and arithmetic
operators, and leaf nodes are the fuzzy variables. It combines
the interpretability of both decision trees and fuzzy logic, and
can be interpreted by recursively parsing from the root node.

On the other hand, grammars with domain-specific inter-
pretable functions have been used to learn interpretable deci-
sion trees with composite feature tests (multiple single-feature
tests concatenated by logic operators) [191], association rules
[192], rule induction systems [193], [194] and multi-view
learning classification rules [195], [196].

2) Interpretable combinations between nodes: In addition
to designing interpretable functions, we can still use the basic
functions but only allow interpretable combinations between
nodes. A typical example is GP for automatic natural law
discovery [197], where the collected data are physical obser-
vations accompanied by their units of measurement (e.g., m
for length, s for time, kg for mass). Although the data are
all floating numbers and can be combined in any way, some
combinations (e.g., length+mass) are much less interpretable
than others (e.g., time+time), if not interpretable at all.

We can design type constraints based on the dimensions
of the nodes to avoid less interpretable combinations. Specif-
ically, the type of a node is defined as a vector, where each
element represents the exponent on the corresponding unit
of measurement. For example, for the measurement vector
[kg, m, s], then the types of a mass variable (kg) and a time
variable (s) are [1, 0, 0], and [0, 0, 1], respectively.

From domain knowledge in physics, interpretable addi-
tion/subtraction requires the two variables to have the same
type. Moreover, the type of the output depends on that of the
inputs and the function, e.g., m × m → m2. We can define
corresponding type constraints as below:

• +: ([m, l, t], [m, l, t])→ [m, l, t]
• −: ([m, l, t], [m, l, t])→ [m, l, t]
• ×: ([m1, l1, t1], [m2, l2, t2])→ [m1+m2, l1+ l2, t1+ t2]
• /: ([m1, l1, t1], [m2, l2, t2])→ [m1 −m2, l1 − l2, t1 − t2]
The GP respecting the constraints on dimensions is called

dimensionally aware GP [198]. It penalises the combina-
tions violating the constraints during the search process,
and has successfully evolved more interpretable models for
energy conservation law [198], automated innovisation [199],
scheduling dispatching rules [200], crowd behaviour modelling
[201], and Feynman Equations [202].

In contrast with defining type constraints, a more generic
approach is to use context-free grammar [203] to restrict
the model structure, and use grammar-guided GP [33] or
grammatical evolution [34] to learn GP models following the
grammar. Interpretable grammars can help GP obtain more in-
terpretable models. Different domain-specific grammars have
been designed to learn laws in high-energy physics [204] and
scheduling heuristics [205].

Even for general symbolic regression with no domain
knowledge, grammar may still be used to improve the model
interpretability. For example, a grammar is proposed in [206]–
[208] to restrict the structure of the evolved model to be
the so-called canonical form. The model alters between “L”

Fig. 12. A canonical form of GP model.

layers and “NL” layers. A “L” layer is the sum of a poly-
nomial/rational and possibly a “NL” layer. A “NL” layer is
the product of a polynomial/rational and a non-linear function,
which takes another “L” layer as the input. An example model
is shown in Fig. 12. The canonical form can well balance
between the interpretability (through “L” layers) and capability
(by “NL” layers).

3) Problem decomposition: Instead of solving the problem
as a whole and obtaining a huge and complex model, we can
decompose the problem and learn interpretable modules or
sub-models to solve the decomposed sub-problems.

Problem decomposition can be sequential or parallel. In
sequential problem decomposition, the sub-problems have
hierarchical relationship, and the solutions of lower-level sub-
problems serve as modules for solving higher-level sub-
problems or the original problem. Automatically Defined
Functions (ADFs) [209] is an earliest approach for sequential
problem decomposition. ADFs evolve building blocks along
with the main population, which can then be reused as modules
in the GP individuals. The layered-learning GP approaches
[210]–[216] decompose the problem into hierarchical sub-
problems with increasing complexities, and solve them se-
quentially (the original problem is solved last). The solutions
of the former easier sub-problems are reused as initial individ-
uals to solve the latter more complex sub-problems. The run
transferable library approaches [217]–[220] follow the same
sequential run process, but keep a library of functions rather
than the raw GP individuals. Each element in the library is
referred to as a tag addressable function. It is updated after
each GP run, and used for initialising the individuals for
solving the next sub-problem.

In parallel problem decomposition, the sub-problems com-
plement with each other (e.g., fitting different subsets of data
points), and their solutions work in a team to solve the
original problem. Ensemble GP is a common approach in
this category, where each sub-model in the ensemble fits a
subset of the data points. As each sub-problem is simpler
than the original problem, the sub-model should also be
more interpretable. Existing studies [221], [222] have shown
that the conventional bagging and boosting ensemble learning
approaches have limitations for GP, as they are susceptible to
noise and can have large biases, thus may not be better than
any simple ensemble in some cases. The N-Version (island-
based) GP and cooperative co-evolution GP [223], [224] have
shown better performance than bagging and boosting. They
maintain multiple populations, each for evolving a sub-model.
The ensemble is formed by all or a random subset of the sub-
models. The orthogonal evolution of teams approach [225]
improves the performance by reducing the correlation between
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the team members. As a further improvement, tangled program
graphs [226]–[239] employ graph-based representations to
learn the teams. Specifically, it consists of a “node” population
and a “program” population. The two populations cooperate
to evolve good teams in the node population (pointing to the
sub-models in the program population) and good sub-models
in the program population.

In addition to cooperative co-evolution, competitive co-
evolution can also be used for problem decomposition. The
Pareto-coevolutionary GP [240] and symbiotic bid-based GP
[241]–[243] approaches maintain populations of GP sub-
models, their teams and points. The teams, consisting of the
sub-models in the model population, aim to fit the points
as much as possible, while the points are evolved to better
distinguish the teams.

E. Learning GP Model Interpretability Measures

Interpretability is subjective, and there is no universally ac-
cepted interpretability measure. Most intrinsic interpretability
XGP approaches simply optimises an interpretability proxy
measure, but without real interpretability assessment from
human users. To address this issue, Virgolin et al. [244]
proposed to learn the interpretability measure based on the data
generated from a survey. The survey was conducted to collect
human feedback on randomly generated formulas in terms
of simulatability and decomposability as defined in [48]. The
survey data consists of four model features: the number of non-
arithmetic operations, the number of consecutive compositions
of non-arithmetic operations, the number of operations, and
the size of the formula. The output is the product between
the correctness ratio of an response’s answer and this person’s
confidence, which is treated as the estimate of interpretability.
Then, a weighted sum function of the four model features is
learnt from the survey data as a new model interpretability
measure. By optimising this new interpretability measure, GP
can obtain more accurate models than simply minimising
model size, and the evolved models are also arguably more
interpretable. As discussed in the paper, the major limitation
of the work is the limited responses and the feedback is mainly
from students and faculty members from universities. Then,
Virgolin et al. [245] proposed another approach called “Model
Learning with Personalized Interpretability Estimation (ML-
PIE)”. This approach is a human-in-the-loop system, which
asks for human feedback during the evolutionary process.
Specifically, the system regularly shows a pair of evolved mod-
els to users and asks for their opinion on which one is more
interpretable. Then, the internal GP adjusts the interpretability
objective function based on user feedback.

F. Summary

This section reviews intrinsic interpretability XGP ap-
proaches that consider model interpretability from the aspects
of (1) model complexity (including size), (2) number of
features, (3) meaningful combinations between features, and
(4) learning interpretability measures from questionnaires.

The first three measures do not rely on user preference,
and focus on different aspects of model interpretability. They

may not be sufficient to obtain interpretable models by them-
selves. For example, a small model with many non-linear
functions might not interpretable, and a model with few
features but meaningless combinations among them can be
hard to interpret. The model complexity, structure and number
of features should be considered simultaneously to obtain more
interpretable models.

In contrast, the last measure can better reflect model in-
terpretability. However, different applications/domains may
need different interpretability measures, and it can be time
consuming and costly to collect data for learning an accurate
interpretability measure.

IV. POST-HOC INTERPRETABILITY XGP METHODS

The post-hoc interpretability methods aim to approximate
the behaviour of a pre-trained black-box model. In contrast to
the intrinsic methods, there is very limited work on post-hoc
XGP methods. They can be grouped into (1) post-hoc global
interpretability by GP that explains the global behaviour on
all instances; and (2) post-hoc local interpretability by GP
that explains the local behaviour on a specific instance.

A. Post-hoc Global Interpretability by GP

Due to its good interpretability, GP can be directly used to
achieve post-hoc global interpretability. Specifically, a dataset
is first generated from the explained model, where the target
output is the prediction of the explained model. Then, an inter-
pretable GP model is trained to fit the generated dataset. This
process is almost the same as intrinsic XGP approaches, except
that we use the dataset generated from the explained model
rather than the original one. Note that the GP models must be
interpretable (e.g., have interpretable structures and small size)
to be able to explain the black box model. In [246], a multi-
objective GP method is developed to learn an interpretable
decision tree by simultaneously maximising the reconstruction
ability of the model and minimising the model complexity.
The results on a wide range of classification datasets show
that the proposed method achieves at least the same accuracy
but with lower model complexity and better interpretability
than the compared methods. For example, it produces a 4-
layer decision tree that can replicate the predictions of the
DNN with 200 hidden layers.

In [247], [248], two novel post-hoc interpretability GP
algorithms are developed to balance the accuracy and compre-
hensibility of the learned models. The first algorithm named
GEMS is used for ensemble creation, and the second one
named G-REX is used for rule extraction from opaque models.
The main property of GEMS is the ability to combine smaller
ensembles and individual models in a completely random way.
Moreover, GEMS can use base models of any kind and the op-
timisation function is very flexible, easily permitting inclusion
of, for instance, diversity measures. The experiments show that
GEMS can obtain higher accuracy than both straightforward
design choices and random forests and AdaBoost. The key
quality of G-REX is the inherent ability to explicitly control
the accuracy vs comprehensibility trade-off. Compared to the
standard tree inducers C5.0 and CART, and some well-known
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rule extraction algorithms, the rules extracted by G-REX are
much more accurate and compact.

B. Post-hoc Local Interpretability by GP

The post-hoc local interpretability aims to explain the
local behaviour of the given model on a specific instance.
In contrast with the global interpretability, which requires a
comprehensive dataset with a wide range of instances, the local
interpretability requires only a local dataset with instances
similar to the given instance.

For classification and regression tasks, an instance is a
feature vector x, and the local dataset can be generated by
sampling around x in the feature space (e.g., following a
multivariate Gaussian distribution [249]). The work in [249]
developed a GP method to explain the local behaviours of pre-
trained black box models such as random forests and DNNs,
and the results show that GP can obtain better balance between
accuracy on the generated local dataset and interpretability
than the other post-hoc XAI methods (e.g., LIME [18] and
decision trees). Note that if the dataset itself is complex, to
fit the dataset well, the (intrinsic interpretability) GP models
might need to be large and complex, and less interpretable.
To address this issue, we can use an even simpler model
to explain the complex GP model. For example, Filho et
al. [250] proposed to use linear model to approximate the
local predictions of a complex GP model around a given
datapoint for symbolic regression. The local dataset contains
a number of nearest neighbours from the training set (rather
than randomly sampling). Experimental results and extensive
analyses show strong approximation, but this local explanation
method was only tested on very low-dimensional datasets, and
more complex problems need to be considered in the future.

For sequential decision making problems, an instance is a
〈state, action〉 pair rather than a datapoint in the feature
space, and the local explanation becomes “why the action
(instead of other candidate actions) is selected by the model in
this state”. The work in [251] proposed to use linear model to
explain the local behaviour of a complex GP-evolved policy in
terms of ranking the candidate actions in a given state. Instead
of generating a local dataset around the state, the linear model
aims to replicate the ranking (i.e., relative order of the outputs)
of the candidate actions given by the explained GP policy in
the state. The proposed method can find interpretable linear
models with highly consistent local ranking behaviours with
the explained GP models in a wide range of states.

V. VISUALISATION XGP METHODS

The visualisation of data, algorithmic processes and results
is critical in developing XAI systems. The relationships within
data of relatively high dimensionalities (e.g., 10 or more fea-
tures) is extremely difficult for even experienced practitioners
to understand. The use of visualisation — which represents
high-dimensional data in two- or three-dimensional space —
is a powerful tool for explainable exploratory data analysis
in today’s big data era. GP is uniquely positioned to produce
explainable visualisations due to its functional model structure;
most visualisation methods do not provide a mapping between

features in the data and the resulting visualisation. In addition
to understanding the structure of data, one must also be able to
understand the function of AI algorithms and models that are
used on that data. Recently, visualisation of GP models and the
GP process itself have helped users to better understand and
explain the evolved GP models and how they were constructed
[252]. In this section, we will survey (1) visualisation by
GP, e.g., using GP for explainable data visualisation, and (2)
visualisation for GP, e.g., using visualisation techniques to
explain GP models and learning process.

A. Visualisation by GP

Data visualisation is typically performed by projecting a
high-dimensional space into a two-dimensional (or, some-
times, three-dimensional) space that can be directly plotted
for human interpretation. This can be performed in either an
unsupervised or supervised manner.

Early work proposed the application of GP to exploring
benchmark medical data [253] by evolving functional map-
pings using a three-tree representation. This was an unsu-
pervised approach: the authors did not use class information
despite the data being labelled, giving a “true” visualisation
of the data structure. In contrast, supervised visualisation
methods will purposefully skew the feature space to better
separate classes. An unsupervised approach is best for under-
standing the natural topology of the data, whereas a supervised
approach lends insight into how well-structured the data is for
supervised learning purposes.

GP has been used for manifold learning [254]–[256], which
learns the inherent structure within a high-dimensional dataset
and represented/visualise it in a much lower-dimensional
space. The proposed GP-MaL (GP for Manifold Learning)
approach aims to preserve the ordering of neighbours for
each instance across the original high-dimensional and mapped
low-dimensional spaces. Experiments show that GP-MaL can
achieve competitive performance to existing manifold learning
methods including t-SNE, but produce interpretable models
evidenced by further analysis on the generated trees and the
visualisation results.

More recently, GP-tSNE [257] was proposed to per-
form unsupervised feature visualisation based on the well-
established t-Distributed Stochastic Neighbour Embedding (t-
SNE) method [258]. GP-tSNE uses the same objective func-
tion for measuring visualisation quality as t-SNE, but employs
GP to produce an interpretable functional mapping rather than
only an embedding (as in regular t-SNE). While visualisation
quality was lower in some cases than standard t-SNE, the
authors showed that an EMO approach could produce a range
of visualisations at different levels of model (tree) complexity.
Recent work has further improved the performance of GP in
producing such functional mappings [256], [259].

Icke et al. [260], [261] proposed the multi-objective ge-
netic programming projection pursuit (MOG3P) algorithm to
improve the visualisation quality of feature construction in
supervised (classification) problems. Their method considers
three objectives: classifiability, visual interpretability, and se-
mantic interpretability. Classifiability measures the quality of
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the features for supervised learning; visual interpretability is
measured using a proxy of class compactness and separability;
and semantic interpretability considers the size and functional
complexity of the two evolved GP trees. A user study [262]
was also performed, which investigated the consistency be-
tween automated measures and human perspectives of visual
and semantic interpretability. A later approach focused on clas-
sifiability and visual interpretability only, but used a number
of different measures for each of these objectives [263]. When
using GP for feature construction tasks, it is also possible to
use the constructed features themselves as axes of a scatterplot
to explain their relationships. Virgolin et al. [264] used such
an approach to explaining the performance of the Gene-pool
Optimal Mixing Evolutionary Algorithm (GP-GOMEA) on
machine learning tasks.

B. Visualisation for GP

From an academic research perspective, understanding the
evolutionary process (i.e., how the good GP models are found)
is often even more important than understanding the models
themselves. Convergence plots, population diversity plots, and
other analysis methods are commonly used in GP and in other
EA methods [265].

In addition to this, there have been GP-specific extensions
proposed that use measures such as edit distance [266] and
structural diversity [267] to measure the diversity of GP pro-
grams. Medvet et al. [268] used diversity and usage maps (DU
maps), which are heat maps that visualise both the diversity of
the population and the contribution of genes (e.g., sub-trees)
to the overall model. Rather than taking a population-wide
approach, Daida et al. [269] focused on tracking the diversity
of individual GP programs across the evolutionary process.
This allowed them to understand and improve the evolutionary
search process. PushGP (a version of stack-based GP) was
analysed by constructing the full ancestry graph for an entire
algorithm run [270]. By performing a deep analysis of the
ancestry graph, the authors were able to learn more about the
role of different genetic operators in finding a solution, which
can allow for further refinements of the PushGP algorithm.

Visualisation of the GP process has also been performed
in a problem-specific manner. The Computational Evolution
System (CES) — an extension to GP that incorporates greater
biological realism — was applied to cancer problems, with
visualisation used to identify and explore interesting patterns
in the results [271]. Nguyen et al. proposed new visualisation
methods for understanding the performance of GP on job
shop scheduling problems using growing neural gas [272] and
people-centric approaches [273]. While these methods were
tested on specific tasks, they have clear potential for being
applied more widely. Indeed, XGP has been applied to a
plethora of real-world applications; we survey a selection of
applications in the next section.

VI. APPLICATIONS OF XGP

XGP has successfully been applied to improve the inter-
pretability of GP models in many real-world applications. The
application domain areas include

• primary industry such as agriculture, aquaculture, water
resources seafood and open ocean industry;

• (bio)medical and medicine domains such as disease di-
agnosis, biomarker detection and drug discovery;

• environment and climate changes such as global temper-
ature change, and natural disaster prediction;

• high-tech and high-value industry and manufacturing
such as control and automation, games and graphics,
robotics, cybersecurity and sustainable energy; and

• social and economic aspects such as education, CPI
prediction and council resource management.

With the further development, it is clear that XGP will
be used much more widely to almost all major application
domains and our daily life over the next ten years. Table III
shows a representative sample of such real-world applications.

TABLE III
REAL-WORLD APPLICATIONS OF XGP.

Application Domain References
Fish weight prediction [274]

Prediction/Detection of phytoplankton
species

[275], [276]

Parkinson disease diagnosis [68], [277], [278]
Diabetes diagnosis [246], [249]

Skin cancer detection [175], [176]
Disease prediction from biomedical data [29], [157], [158],

[166], [174], [177],
[279]

Drug discovery and formulation [280], [281]
Cropland field extraction assessment [282]
Modelling global temperature change [283]

Condition monitoring and fault analysis [172], [284]
Dynamic system control [285]

Waste collection routing decisions [87], [88], [223],
[224]

Industrial control [12], [286]
Predicting pipe failures in water distribution

systems
[287]

Forecasting solar power production [288]
Control of synchronisation in the oscillator

networks
[289]

Student performance prediction [290]
Dynamic portfolio trading [291]

Modelling cosmic structures [292]
Learning transformation functions in

computer graphics imaging
[293]

VII. CHALLENGES AND FUTURE DIRECTIONS

The area of XGP is still in its infancy, and there are
many challenges to be addressed, leading to future research
directions in this area.

The notion of “interpretability” is inherently subjective:
defining and understanding this concept requires insights from
psychology and the wider social sciences. The limited existing
XGP approaches typically define quantitative proxy inter-
pretability metrics such as the number of nodes, tree depth,
model complexity, and the number of meaningful building
blocks. However, there is no robust literature on how well
these proxy metrics reflect the “real” interpretability for human
users. The tendency of many GP researchers to equate “small”
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with “interpretable” lacks nuance [294]. The interpretability
of an XGP (or any XAI) system depends not only on one’s
technical expertise, but also on their cultural background,
world views, and personal priorities in understanding different
factors in decision making. A benchmark of explanatory
methods was developed to facilitate the evaluation of quality of
post-hoc explanations [295]. Some initial work has sought to
learn proxy metrics based on questionnaires (e.g., [244]), but
significantly more work is needed — especially in automating
user-specific explanations.

There is also a trade-off between a model’s accu-
racy/effectiveness and interpretability [51]; there is no single
model that can be both maximally effective and optimally
interpretable for most reasonably difficult problems. Attempts
to balance these two objectives are easily thwarted by local
optima: it is, in general, much harder to optimise a small (inter-
pretable) function to be more performant than a large function
with many free parameters. The post-hoc simplification of
complex GP trees (at the end of the evolutionary process) is
reasonably widespread in the literature, but such techniques
are still ultimately constrained by the semantic tree structure.
Furthermore, if the interpretability is defined by a range of
different factors (e.g., program size, number of features used,
and model structure) that are potentially conflicting with each
other, the problem will become a complex many-objective
optimisation problem, which is very challenging to solve.

VIII. CONCLUSIONS

This survey reviews a recent emerging area in GP and
evolutionary machine learning: XAI by GP (XGP). This paper
discusses both the recent studies that explicitly consider im-
proving the interpretability of the GP-evolved models as well
as earlier studies that can potentially evolve more interpretable
GP models as a byproduct of their algorithm design. The
surveyed papers have also shown the clear potential of GP for
contributing to the wider XAI area. Firstly, GP itself has a rela-
tively interpretable program structure that combines symbolic
and computational AI (both logical and algebraic operators
in the function set). Secondly, as an evolutionary computation
approach, GP uses a population-based search process to evolve
programs, which is ideal to tackle the challenges of the
trade-off between effectiveness and interpretability. Finally, the
fitness landscape of many formulations of interpretability is
poorly-defined and is likely to be discontinuous and/or non-
differentiable. GP does not rely on the availability of gradient
information or any other strong mathematical assumptions:
thus it is capable of searching in the space of interpretability
effectively. This is a promising research area with great
potential in contributing XAI and their real-world applications.
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[154] I. Gonçalves, S. Silva, J. B. Melo, and J. M. B. Carreiras, “Random
sampling technique for overfitting control in genetic programming,” in
Genetic Programming, 2012, pp. 218–229.
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