
School of Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Internet: office@ecs.vuw.ac.nz

A Machine Learning Approach to
Binary Equivalence

Alix Schultze

Supervisors: Jens Dietrich, Andrew Lensen

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

In 1984 Ken Thomson demonstrated the danger posed by malicious software
compilers. Efforts to verify that compiled binaries have not been compromised
by malicious build tools commonly involve building them in separate environ-
ments, and then comparing them to identify any discrepancies. However, com-
paring binaries is not straightforward. This project aims to identify binary equiv-
alence of Java classes by applying the CodeT5+ large language model to disas-
sembled bytecode. The resulting embeddings are classified as equivalent or not
equivalent with an accuracy of 92%, showing that large language models can
be used to identify binary equivalence with reasonable success. This report de-
scribes the methodology and findings of this research.

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Binary Equivalence . 2

2 Background 5
2.1 Software Builds and Supply Chains . 5
2.2 Verifiable Builds . 5

2.2.1 Deterministic Builds . 5
2.2.2 Explaining Non-Equivalences . 6
2.2.3 Verifiable Builds in Practice . 6
2.2.4 Identifying Binary Equivalence . 7

2.3 Large Language Models for Bytecode Classification 7
2.3.1 Preparing Built Binaries for Machine Learning 7
2.3.2 Applying Machine Learning to Bytecode Embeddings 9

3 Methodology 11
3.1 Datasets . 11
3.2 Inception . 12
3.3 Proof-of-Concept . 13

3.3.1 Proof-of-Concept Outcome . 14
3.4 Application to BinEq Dataset . 15

3.4.1 Data preparation . 15
3.4.2 Classification . 17
3.4.3 Metrics . 19

4 Results 21
4.1 Binary Classification . 21
4.2 Multiclass Classification . 21
4.3 Sequential Classification . 22

5 Discussion 25
5.1 Identifying Vulnerabilities . 25
5.2 Explainability . 25

6 Conclusion 27

i

ii

Chapter 1

Introduction

Compilers are used to convert source code into executable files known as binaries. In 1984
Ken Thomson demonstrated the potential danger of trusting a compiler to generate a bi-
nary that accurately reflects the original source code [1]. Thomson showed this by creating
a compiler that could insert a backdoor into the binaries it produced. This compiler could
also detect whether it was compiling itself and insert code to propagate its malicious be-
haviour into the new compiler. Inspection of the source code provided no defence against
this because the compiler could build a compromised binary from completely clean source
code.

Compromised build tools, such as compilers and linkers, can be used to carry out soft-
ware supply chain attacks. Real-world cybersecurity breaches illustrate the stealth and ex-
tensive reach of these attacks. For example, the SUNBURST backdoor targeted SolarWinds
Orion, a popular network monitoring tool. SUNBURST was compiled into Orion through
a compromised build server and delivered to customers as a digitally signed update. The
backdoor was unknowingly downloaded by 18,000 SolarWinds customers, including nu-
merous government agencies and major organisations [2].

1.1 The Problem

Consumers of modern software often do not compile software from source code themselves
but obtain pre-built binaries from third parties. An everyday example of this is installing
a web browser or game on a home computer, but the practice extends well beyond that.
Software vendors often depend on binaries obtained from other vendors or open-source
repositories. For example, Google’s Assured Open Source Software project provides open-
source packages that have been built on their Cloud Build platform [3]. There are various
package repositories that make it easy for contributors to share pre-built software: Maven
Central for Java is an example [4]. Given Thomson’s demonstration, how can we verify that
these third-party binaries are true representations of their source code and do not contain
any malicious behaviour? A way to verify pre-built binaries is needed.

Formal methods for verifying the equivalence of programs have limitations, and do not
supply a general solution for non-trivial programs [5, 6]. A pragmatic approach involves
compiling binaries in separate build environments and comparing them to detect any dis-
crepancies. Users of open-source libraries may take this approach to verify that pre-built
packages actually correspond to the source code they claim to originate from. This method
relies on the premise that extra functionality injected by a compromised build environment
would result in a noticeably different binary. Additionally, the ability to generate equiva-
lent binaries using different build environments increases trust in their authenticity. This is

1

because compromising two distinct build environments is more challenging for an attacker
than compromising just one.

However, a bit-for-bit or byte-for-byte comparison of binaries is not suitable for identi-
fying discrepancies because many software-building tools have not been designed with this
usage in mind, so it is usual for their outputs to vary. For example, compilers can exhibit
non-deterministic behaviour arising from bugs1 or multi-threading, producing different bi-
naries from the same source code. There are efforts to make build pipelines deterministic,
but this can be difficult to achieve and cannot address software that has already been built
and distributed [7].

Artificial intelligence presents another possibility for comparing binaries. Large lan-
guage models (LLMs) can operate at high levels of abstraction, which may allow us to iden-
tify discrepancies in behaviour regardless of details such as when and how binaries were
built. Some downsides of this approach are the potentially high computational costs, the
need for large amounts of training data and the difficulty of explaining how an LLM arrives
at its outcomes.

This project aims to implement and evaluate the use of a large language model for exam-
ining pairs of binaries, with the goal of developing a method that can reliably classify pairs
of binaries as equivalent (EQ) or not equivalent (NEQ). Such a method would be helpful in
verifying that compiled binaries are true representations of their source code.

1.2 Binary Equivalence

We consider two binaries to be equivalent if they have equivalent behaviour, meaning that
a given input should always produce the same output. This definition allows us to differen-
tiate between normal binaries and binaries with malicious inclusions because they behave
differently from each other. The idea of binary equivalence is discussed in [8], which gives
the example of binaries compiled from the same source code. Two binaries compiled from
the same source code should exhibit equivalent behaviour, even if they are compiled with
different compilers (assuming the compilers implement the same standards).

Binaries compiled from different source code could also have equivalent behaviour. This
might happen due to refactoring, where the source code is changed but the program’s be-
haviour stays the same, or through coincidence. However, this project is only concerned
with the equivalence of binaries compiled from the same source code.

The project makes use of a pre-existing ‘BinEq’ dataset, which consists of pairs of Java
classes that are labelled equivalent (EQ) or not equivalent (NEQ) [8, 9]. The two groups can
each be broken down into sub-groups as follows:

• EQ-DiffComp: pairs compiled with different Java compilers

• EQ-SameComp: pairs compiled with the same Java compiler, but different major ver-
sion numbers; see listings 2.2 and 2.3 for two EQ bytecode samples compiled from the
same source code

• EQ-SameMjCompVer: pairs compiled with the same Java compiler and same major
version number

• NEQ1: pairs that differ due to breaking API changes

• NEQ2: pairs that differ due to changes applied by a mutation testing framework

1Example of a non-determinism bug in the Java compiler: https://bugs.openjdk.org/browse/JDK-8264306
Accessed 2024-10-13

2

• NEQ3: pairs that differ due to vulnerability patches

This project uses machine learning techniques to classify items in these categories. It
takes pairs of Java classes from the dataset, creates bytecode documents for each class and
uses a large language model to calculate embeddings for those documents. Finally, a classi-
fier is used to identify which label a pair belongs to based on the embeddings. The solution
is evaluated by first testing whether it can correctly classify pairs of binaries as EQ or NEQ,
and then whether it can identify the subsets of EQ and NEQ.

3

4

Chapter 2

Background

2.1 Software Builds and Supply Chains

What does a software build environment look like? Turning source code into executable
binaries may involve compiling, linking, fetching dependencies, testing, publishing, and
more. Continuous integration and continuous deployment (CI/CD) products supplied by
vendors such as GitLab and Jenkins are often used to automate these steps. Build envi-
ronments can become complex, with many components to manage. Ensuring that every
component of a software build environment is trusted can be challenging.

Significant work has been done to improve the security and assurance of software supply
chains. The concept of a ‘software bill of materials’ (SBOM) has been developed collabora-
tively and is currently mandated for software provided to the United States Food and Drug
Administration [10, 11]. An SBOM lists all dependencies of a software application, allowing
users to see whether the software contains any potentially harmful components. Another
measure to improve supply chain security is the Supply-chain Levels for Software Artifacts
(SLSA) framework, which is an industry collaboration including enterprises such as Google,
Intel and the Linux Foundation [12]. It aims to establish guidelines that can mitigate a wide
range of supply-chain attacks, such as unauthorised source code changes and the use of
compromised dependencies. Of particular interest to us are efforts to improve assurance
for pre-built binaries, which is the primary focus of the Reproducible Builds [13] project,
Google’s Assured Open Source Software [3] service and Oracle’s build-from-source project.

2.2 Verifiable Builds

A software build is considered verifiable if it includes sufficient information to reproduce it
exactly, or near-exactly with any differences explained. This property allows independent
parties to reproduce the binary and check whether the output matches expectations. It is
intended to provide assurance that the binary is a true representation of the source code
[7, 14].

2.2.1 Deterministic Builds

The primary approach towards verifiable builds is to make the build process determinis-
tic, meaning that a specific source code input must always produce an identical binary
output. However, there are barriers to implementing this. Build tools may exhibit non-
deterministic behaviour or incorporate non-deterministic information directly into the bi-
nary; timestamps are a notorious source of non-determinism in software builds [14]. One

5

report describes some of the difficulties encountered by organisations implementing de-
terministic build pipelines [7]. The authors studied three large-scale commercial systems
within Huawei. Some challenges they identified were the large resources needed to lo-
cate and resolve sources of non-determinism, non-determinism imposed by security mech-
anisms such as digital signatures, and non-determinism arising from third-party dependen-
cies which were not within the organisation’s control.

The Reproducible Builds project is a communal project that promotes deterministic build
processes as a way to improve supply chain security. It aims to address attacks on build
infrastructure through verifiable builds. Its website states that ‘First, the build system needs
to be made entirely deterministic: transforming a given source must always create the same
result.’ [13] However, producing deterministic builds is not simple. The website goes on to
state that the build environment must be documented sufficiently so that a third party could
recreate it: ‘Second, the set of tools used to perform the build and more generally the build
environment should either be recorded or pre-defined. Third, users should be given a way
to recreate a close enough build environment, perform the build process, and validate that
the output matches the original build.’

Given the above process, an independent party can verify a binary by setting up a build
environment similar to the original build environment and checking whether it produces
the same binary. This assumes that the independent party has access to build resources
equivalent or ‘close enough’ to those used for the original build. However, there is still room
for security holes; for example, in a situation where the original build environment includes
a security flaw, and the verification environment reproduces that flaw. In this situation, a
build could be verified without identifying the security flaw.

2.2.2 Explaining Non-Equivalences

A complementary approach to verifiable builds is to accept non-equivalences that can be
explained and documented [7]. This approach deals with sources of non-determinism that
are impractical or impossible to mitigate by creating provenance to track and record them.
However, human judgement is needed to decide which non-equivalences should be allowed
and explain the rationale for their acceptance. Identifying and explaining the root causes
of non-equivalences can be difficult: one case study encountered non-determinism arising
from the brand of CPU in the build machine [14]. Such cases make this approach difficult to
automate and present scalability problems.

2.2.3 Verifiable Builds in Practice

The authors of [15] created a process for producing verifiable builds for Java. Their approach
was to eliminate sources of non-determinism and explain any sources that could not be
eliminated. This approach required specialised software, as well as human input to diagnose
and explain the non-equivalences. A similar approach had been previously developed for
C/C++, but could not be immediately applied to Java binaries due to Java’s different sources
of non-determinism and the different mitigations required to address them. For example,
instruction interception techniques that operated at the kernel level had to be adapted to
work on the Java Virtual Machine.

The authors applied their process to software available from the Reproducible Builds
project. However, they were not able to produce verifiable builds for all of the items they
tested due to non-determinism arising from third-party libraries.

6

2.2.4 Identifying Binary Equivalence

Approaches relying on deterministic builds present implementation difficulties that may
place them beyond the reach of some software providers. Additionally, they do not ad-
dress the replication of security flaws that could occur through the replication of build en-
vironments, or the fact that many pre-built binaries have already been distributed without
verification in mind. The idea of binary equivalence provides an alternative to relying on
deterministic builds.

Large language models have the potential to compare binaries without relying on a
byte-by-byte analysis. They are capable of operating at high levels of abstraction, which
may allow us to accept the non-deterministic nature of software builds and test for binary
equivalence. This approach could provide an option for assessing binaries built without
consideration for determinism or provenance, such as ad hoc and historical builds.

2.3 Large Language Models for Bytecode Classification

Large language models are examples of complex neural networks. They are trained on large
amounts of data and demonstrate the ability to learn and understand abstract concepts. For
example, Google’s T5 model can translate between natural languages such as English and
French [16]. If we consider abstraction as a way of reaching a concept regardless of its exact
expression, then the ability to translate between languages demonstrates this: the meaning
of a translated message remains the same, but its expression is changed. The capacity for
abstraction is useful to us because we want to identify binary equivalence regardless of the
exact bits and bytes used to express it.

Internally, an LLM expresses meaning in numerical form. The neural network maps
aspects of the input to different dimensions, creating a high-dimensional vector. These
vectors, referred to as ‘embeddings’, can be extracted from the LLM and used for further
machine learning operations. For example, a vector representation enables distance calcu-
lations, which can be used to measure how similar two inputs are while disregarding the
exact details of their original representations.

LLMs have been successfully applied to a variety of language-related domains, includ-
ing the understanding of computer programming languages. LLMs specialised for source
code, sometimes called ‘code understanding’ models, can be used to generate code based
on natural-language requests and produce summaries of source code [17]. However, our
question is whether a binary accurately represents its source code. This must be answered
by inspecting the binary, not the source code.

Decompilation techniques can be used to recover source code from compiled binaries,
but they cannot reliably restore the original text [18]. Source code contains information (such
as comments, compiler directives and high-level code structures) that may be permanently
lost during compilation. Additionally, transforming the source code to an executable in-
volves processes, such as compiling and linking, that may make unauthorised changes to
the output [1].

2.3.1 Preparing Built Binaries for Machine Learning

How can we prepare a binary for a machine learning pipeline without the source code?
While it would be possible to analyse a binary byte-by-byte, raw bytes lack the semantic
information that source code contains.

Bytecode is an intermediate representation that lies between source code and raw ma-
chine instructions. It is often used to run programs in a virtual machine instead of directly

7

on the hardware. Programming languages such as Java and C# use bytecode to make their
built binaries more portable by removing the need to build different binaries for different
varieties of hardware. Bytecode contains more semantic information than raw bytes: for
example, it has instructions for specific operations such as integer addition.

Java bytecode fully captures the behaviour of the binary and can also be converted to
text for input into a code understanding model. The Java Development Kit includes the tool
‘javap’, which can be used to disassemble a Java class. The -c flag can be used to obtain the
bytecode representation of a Java class as human-readable text [19]. The output does not
include private members by default, but they can be included by using the -p flag.

Two examples of javap output are shown in listings 2.2 and 2.3. These listings show the
bytecode representations of the string concatenation function shown in listing 2.1, which has
been compiled with two different versions of the Java compiler and disassembled with the
command javap -c (the -p flag is not needed here because there are no private members).
We would expect our machine learning solution to classify these two bytecode documents
as EQ because they represent equivalent behaviour. However, we can see that the bytecode
implementations are quite different: the Java 17 version makes a dynamic function call to
‘makeConcatWithConstants’ instead of using a StringBuilder to concatenate the strings.

Embedding provides a way of converting raw input, such as text, to a more suitable
format for further machine learning operations. The embedding process can be applied
to the output of javap to produce an embedding vector that represents a Java class. Once
computed, the embedding can be stored for later use.

Listing 2.1: Java source code for listings 2.2 and 2.3.

c l a s s Concatenator {
public S t r i n g concat (S t r i n g x , S t r i n g y) {

return x + y ;
}

}

Listing 2.2: Bytecode representation of listing 2.1 compiled with Java 17.

public j ava . lang . S t r i n g concat (java . lang . Str ing , java . lang . S t r i n g) ;
Code :

0 : a load 1
1 : a load 2
2 : invokedynamic #7 , 0 / / InvokeDynamic # 0 :

makeConcatWithConstants : (L j a v a / l ang / S t r i n g ; L j a v a / l ang / S t r i n g
;) L j a v a / l ang / S t r i n g ;

7 : areturn

8

Listing 2.3: Bytecode representation of listing 2.1 compiled with Java 8.

public j ava . lang . S t r i n g concat (java . lang . Str ing , java . lang . S t r i n g) ;
Code :

0 : new #2 / / c l a s s j a v a / l ang / S t r i n g B u i l d e r
3 : dup
4 : invok espec ia l #3 / / Method j a v a / l ang / S t r i n g B u i l d e r .”<

i n i t >” : ()V
7 : a load 1
8 : i n v o k e v i r t u a l #4 / / Method j a v a / l ang / S t r i n g B u i l d e r .

append : (L j a v a / l ang / S t r i n g ;) L j a v a / l ang / S t r i n g B u i l d e r ;
1 1 : a load 2
1 2 : i n v o k e v i r t u a l #4 / / Method j a v a / l ang / S t r i n g B u i l d e r .

append : (L j a v a / l ang / S t r i n g ;) L j a v a / l ang / S t r i n g B u i l d e r ;
1 5 : i n v o k e v i r t u a l #5 / / Method j a v a / l ang / S t r i n g B u i l d e r .

t o S t r i n g : () L j a v a / l ang / S t r i n g ;
1 8 : areturn

2.3.2 Applying Machine Learning to Bytecode Embeddings

Pre-trained models specifically for bytecode are not publicly available to the best of our
knowledge. However, there are abundant resources for applying LLMs to source code,
and models trained on source code show promise. The BinEq dataset has been used pre-
viously to conduct machine learning classification experiments; for example, in [20] pairs
of binaries were classified as EQ or NEQ using two different GPT models from OpenAI,
as well as neural networks CodeT5+ and CodeLLaMA with encouraging results. GPT-4
scored remarkably well despite not being specialised for code, which the author attributed
to ‘structural similarities between bytecode and other assembly languages.’ This shows that
machine learning models do not need to be specifically trained for bytecode in order to pro-
duce useful results. There is room to expand on this research by exploring other machine
learning models and techniques, such as different classification methods, and by identifying
the nature of binary non-equivalences by identifying the subsets of NEQ.

Related research includes the application of machine-learning techniques to JavaScript
bytecode to identify unwanted behaviours such as tracking and advertising [21]. While this
research addresses a different problem than ours, there is a clear parallel in using bytecode
to infer information about a program’s functionality. In their case, they wished to iden-
tify whether a program exhibited a particular type of behaviour, while we wish to identify
whether two programs exhibit equivalent behaviour. Their use of artificial intelligence for
both embeddings and classification validates our approach.

In summary, recent works show that machine learning techniques, such as using large
language models to generate embeddings, can be successfully applied to bytecode for the
purpose of classifying program behaviour.

9

10

Chapter 3

Methodology

This project aims to improve software supply chain assurance by identifying binary equiv-
alence. To do this, a code understanding model is used in combination with a classifier to
classify compiled Java classes as equivalent or non-equivalent. The work has been carried
out in incremental stages and tests the ability of the code understanding model to iden-
tify equivalence for three sets of code: raw source code, bytecode obtained from a small
hand-crafted set of Java classes and bytecode obtained from a large dataset made up of
open-source Java libraries. The general process was to obtain the bytecode representation
of each Java class using the javap tool, generate embeddings using the code understanding
model, then classify pairs of binaries as EQ or NEQ based on the embeddings. This chapter
describes the specific steps used to validate the process and produce the final results.

3.1 Datasets

The BinEq dataset was the primary dataset used for evaluation. However, due to its com-
plexity and size, a smaller, hand-crafted dataset was created to be used while developing a
proof-of-concept.

Toy Dataset: A small dataset was created to challenge the machine learning model in
specific ways. The toy dataset included examples of four simple programming tasks: integer
addition, integer comparison, string concatenation and conditional branching. These tasks
were chosen to show the proof-of-concept’s ability to discern the meaning of code structures
in context. For example, a single operator can be the difference between integer addition
and integer comparison, but they are fundamentally different tasks and should always be
classified as NEQ. Each task had several different Java implementations, written so that
some would have equivalent behaviour and others would not.

A set of examples used for testing is shown in table 3.1. Integer overflow is a common
source of software bugs where numbers that grow larger than the maximum integer value
‘wrap around’ to the minimum value. The Java code in rows 1, 2 and 3 will exhibit this
behaviour. However, the code in row 4 makes use of a function that detects integer over-

Java code Relationship
1. x + y; Base integer addition code
2. y + x; Equivalent code with operands reversed
3. Integer.sum(x, y); Equivalent code using a method call
4. Math.addExact(x, y); Non-equivalent code: ArithmeticException may be thrown

Table 3.1: Java snippets that may exhibit integer overflow.

11

1. 2. 3. 4.
1. EQ EQ EQ NEQ
2. - EQ EQ NEQ
3. - - EQ NEQ
4. - - - EQ

Table 3.2: Expected classification of paired Java snippets in table 3.1.

flow and throws an ArithmeticException if it is encountered. Table 3.2 shows the expected
classification of these examples. We expect our solution to classify examples 1, 2 and 3 as
EQ to one another, but NEQ to example 4.

BinEq 1.1.0 Dataset: The BinEq dataset contains real Java classes obtained from open-
source repositories. Pairs of classes are grouped as EQ, NEQ1, NEQ2 and NEQ3 [9].

The three NEQ groups represent different types of behavioural non-equivalence. NEQ1
contains pairs differing due to breaking API changes, NEQ2 contains pairs with differences
applied by a mutation testing framework, and NEQ3 contains pairs differing due to vul-
nerability patches. The NEQ3 group is particularly relevant to the problem of identifying
binaries with malicious inclusions.

The EQ group can be broken down into pairs built with the same compiler and major
version number, pairs built with the same compiler but with different major versions, and
pairs built with different compilers. Building classes with the same compiler makes it easier
to compare the resulting binaries and aligns with the practice of reproducible builds, which
encourages us to use similar build environments. Such builds provide strong evidence to
support the assertion that two different binaries originate from the same source code. Build-
ing classes with different compilers makes them harder to compare but provides a different
type of assurance. From a security point of view, proof that a compiler produces EQ binaries
only leads us to ask whether the compiler is good or not. It does not provide any assurance
that the compiler is not malicious. However, producing EQ binaries from different compil-
ers does provide this assurance to some degree, simply because the small likelihood of two
different compilers being compromised in the same way.

3.2 Inception

Initial experiments were conducted using source code instead of bytecode. The Salesforce
codet5p-110m-embedding model was used to generate embeddings for Java source code
files. Pairs of embeddings were then compared to each other using the cosine distance be-
tween the embedding vectors as a measure of similarity.

CodeT5+ is a family of pre-trained large language models from Salesforce. They are
capable of a variety of programming tasks such as code generation, autocompletion and
summarisation [17]. The codet5p-110m-embedding variant can be used to obtain embed-
dings rather than code outputs. CodeT5+ models are trained on nine different program-
ming languages using publicly available source code obtained from GitHub: the point of
this exercise was to establish the model’s ability to identify equivalent behaviour using the
medium it was trained in which is source code, not bytecode.

An early version of the toy dataset was used for the source code experiments. The dataset
contained 18 code snippets with examples of addition, conditional branching and integer
comparison. An embedding was generated for each file, then each embedding was paired
with every other embedding for a total of 152 pairs (182/2 = 152).

Cosine similarity can be used to measure the similarity of text documents [22]. It is based

12

on cosine distance, which measures the cosine of the angle between two vectors. Small an-
gles show that the vectors are pointing in similar directions. In the high-dimensional vector
space represented by the embeddings, small angles show that the vectors have been as-
signed similar meanings by the embedding model. Cosine similarity inverts cosine distance
so that values closer to 1 show greater similarity. This method was selected to provide a
simple means of measuring the similarity of source code documents. Combining this mea-
surement with a threshold would provide a way to classify pairs of documents for proof-of-
concept purposes, with the intention of switching to a more sophisticated method later.

All the pairs were ranked by their cosine similarity scores. The results formed three
groups. The most similar group, with scores ranging from 0.96 to 0.99, were pairs imple-
menting the same task in slightly different ways. Examples of the differences include swap-
ping the order of operands in a comparison, choosing to implement an ‘else’ branch as a
ternary statement, and explicitly throwing an exception that would have been thrown im-
plicitly anyway. The next most similar group of items had scores ranging from 0.91 to 0.95.
It contained pairs implementing the same programming task, but with subtle differences in
functionality: primarily that an exception could be thrown by one snippet but not the other.
These exceptions would arise either from integer overflow checking (see section 3.1 for an
example of this) or attempting to call a function on a null object. These pairs exemplify
similar, but non-equivalent behaviour. The remaining pairs occupied a range well below
the others (0.65-0.73) and consisted of pairs that did not implement the same programming
task.

Using these rankings, the items could be successfully classified as EQ or NEQ by apply-
ing a threshold. All pairs scoring 0.96 or higher in cosine similarity would be classified as
EQ, and all others as NEQ.

Similarity score range Relationship between pairs
0.96-0.99 EQ
0.91-0.95 NEQ implementing the same tasks
0.65-0.73 NEQ implementing different tasks

The source code test showed that the embeddings produced by the Salesforce model
contained useful information about program behaviour. The information captured in the
embeddings was sufficient to rank the similarity of source code pairs in line with our ex-
pectations. The source code contained extremely simple functions and did not approach the
complexity of programs in the BinEq dataset. However, we saw that the code understanding
model could be used to distinguish between EQ and NEQ pairs, including pairs that were
NEQ due to reasonably subtle differences.

3.3 Proof-of-Concept

Following on from promising source code tests, a proof-of-concept was needed to validate
a bytecode-based approach and identify any potential issues as early as possible. The re-
quirements were to take input generated by using tools such as javap, use a large language
model to transform the inputs into embeddings, and attempt to characterise the input based
on those embeddings.

The proof-of-concept operated on the toy dataset, not the BinEq dataset. The test plat-
form was a Windows 10 machine with a Ryzen 7 3700X processor, 16GB of memory and a
GTX 1080 graphics card.

Disassembly: The toy dataset consisted of 29 Java source code files, each containing a
single class with a single method. To prepare for bytecode-based testing, these files were
compiled and disassembled with javap.

13

Three of the 29 files were excluded from testing because they contained deliberate syn-
tax errors and could not be compiled. Each of the 26 remaining files was compiled, then
disassembled inside a Docker container using javac followed by javap -c. Three differ-
ent versions of the Java compiler were sourced from OpenJDK Docker1 images: openjdk8,
openjdk11 and openjdk17. Java versions 8, 11 and 17 were chosen because they are well-
established and commonly used due to having long-term support [23]. The use of multi-
ple versions mirrored the use of multiple Java compilers in the BinEq dataset, though on
a smaller scale. This was important because different versions of the Java compiler can
produce substantially different bytecode documents from the same source code, as demon-
strated in listings 2.2 and 2.3, but the proof-of-concept was expected to be able to identify
them as EQ.

The three Docker containers were used to compile and disassemble three javap docu-
ments for each class. Each javap document was paired with every other document to create
an overall dataset of 6,084 pairs (26 × 32 = 6, 084). Pairs of bytecode documents were la-
belled EQ if we expected them to have equivalent behaviour, otherwise they were NEQ. An
example of equivalent behaviour is when different source code is used to express the same
functionality as described in section 3.1. Another example is when the exact same source
code is compiled with different versions of Java because Java compilers may use different
strategies to accomplish the same behaviour. Different Java compilers were also used to
create EQ pairs in the BinEq dataset.

Embeddings: These were generated using the Salesforce codet5p-110m-embedding model
available on Hugging Face [17]. The model had been trained on source code in various pro-
gramming languages, including Java. It was not known to have been trained on Java byte-
code specifically, but the CodeT5+ family of models had been used to classify bytecode with
some success [20]. Because the toy dataset’s source code files and resulting javap documents
were short, there was no need to consider any input limit imposed by the embedding model.

The embedding step was seen to produce different outputs on different machines. This
was observed when generating embeddings on a Windows desktop, Mac laptop and Linux
lab machine. When embeddings were repeatedly generated on a single machine the outputs
were the same. For this reason, a single platform was used to generate all embeddings.

Classification: A simple classifier was created by combining the cosine similarity mea-
sure used in the previous experiment with a threshold value to determine whether two
embeddings were similar enough to be classified as EQ.

3.3.1 Proof-of-Concept Outcome

To test the proof-of-concept, the embedding model was used to generate embeddings for
each javap bytecode document in the toy dataset. Each pair of embeddings was classified
as EQ or NEQ by computing the similarity of the two embedding vectors and comparing it
to a threshold value. The following table shows the results of classifying 6,084 pairs with
three different threshold values. A threshold of 0.97 results in no false positives (Incorrect
EQ). We see that as the threshold value decreases the percentage of correctly classified items
increases, but so does the number of false positives.

Threshold Correct EQ Incorrect EQ Correct NEQ Incorrect NEQ Total Correct
0.97 406 0 5,202 476 92.18%
0.96 424 18 5,184 458 92.18%
0.95 480 36 5,166 402 92.80%

1OpenJDK on Docker Hub: https://hub.docker.com/ /openjdk/tags Accessed 2024-10-12

14

The most successful threshold value overall was 0.95 with 92.8% of pairs correctly clas-
sified. However, this threshold produced more false positives than the others.

Despite using a relatively unsophisticated method of classification, the proof-of-concept
was able to correctly classify up to 92.8% of pairs. This showed that the embeddings cap-
tured enough meaningful information from the Java bytecode to enable this result. How-
ever, the test data was contrived and not sufficiently complex to represent real-world sce-
narios.

For all three threshold values, incorrectly classified pairs were always in the same func-
tionality group (integer addition, integer comparison, string concatenation or conditional
branching). This suggested that the proof-of-concept could reliably identify when pairs ad-
dressed the same general programming task, but had difficulty with the subtle differences
present in various implementations of the task.

Overall, the proof-of-concept demonstrated the ability of a code understanding model
to capture meaning from Java bytecode, and several opportunities for improvement were
identified. The next step was to adapt the proof-of-concept to use the BinEq dataset, which
also meant adapting the process used to generate embeddings. Additionally, the cosine
distance classifier would be swapped for a more sophisticated one, which would make it
easier to perform multiclass classification.

3.4 Application to BinEq Dataset

Upon completing the proof-of-concept and receiving encouraging output, the next step was
to adapt it to operate on the BinEq dataset. This dataset contained hundreds of thousands
of records drawn from real open-source projects. The scale and complexity of this data
compared to the toy data presented some performance challenges related to the generation
of javap documents and embeddings.

3.4.1 Data preparation

Disassembly: The BinEq dataset contained pairs of Java classes generated by a variety of
compilers. The process for the proof-of-concept had been to use Docker containers to com-
pile and immediately disassemble class files. This meant that the javap version used for
disassembly always matched the compiler. Maintaining this approach with the BinEq data
would mean identifying and obtaining the correct version of javap for each class, a poten-
tially error-prone process. To simplify disassembly, this approach was abandoned in favour
of using a single Java installation (openjdk 17.0.11) to run javap on the entire dataset. This
treated all items the same way and had an additional performance benefit of removing the
overhead of running various Docker containers.

The command javap -c -p was used to disassemble all classes referenced by the BinEq
dataset. The -p flag was used so that private members would be included in the output.
This was important to allow the code understanding model to identify non-equivalences
implemented in private classes or methods. The resulting output was saved to a file, referred
to from here as a javap document.

Model input limit: One of the main challenges was that the CodeT5+ model used for
embeddings only accepted up to 512 tokens as input. This was anticipated to become a prob-
lem when moving from the toy dataset to the BinEq dataset, where tokens would number in
the tens of thousands. A simple solution would have been to swap the CodeT5+ model for a
more generous model that had also been trained on code. However, any model (supposing
a suitable one was found) could reasonably be expected to impose some sort of input limit.
Since Java classes can be arbitrarily long, this would only ever provide a partial solution.

15

One possibility was to reduce the overall size of the javap documents by removing re-
dundant or irrelevant information. Javap documents were ‘minified’ by removing informa-
tion that was implied elsewhere in the bytecode document. Listing 3.1 shows a method call
represented in Java bytecode. The instruction ‘invokevirtual’ is followed by a constant pool
reference ‘#5’ and a phrase including a descriptor of the method’s fully qualified name and
return type. However, the text ‘// Method’ contains information that can be inferred from
context; for example, the ‘invokevirtual’ instruction tells us that this is a method call, so the
word ‘Method’ may be considered redundant. This is an example of information that was
removed from the bytecode documents.

Listing 3.1: Bytecode representation of a method call

1 5 : i n v o k e v i r t u a l #5 / / Method j a v a / l ang / S t r i n g B u i l d e r .
t o S t r i n g : () L j a v a / l ang / S t r i n g ;

However, during test runs with the classifier this had an overall negative effect on the
classification accuracy. This effect suggested that the redundant information was providing
some value to support the model’s understanding, so the practice of removing text from
javap files was abandoned.

Another possibility for reducing the size of bytecode documents was to pre-process them
by breaking them up into small chunks. This would require the resulting embeddings to be
combined somehow but could address the problem of overly large input at the cost of some
loss of cross-chunk context. It was tested by splitting the bytecode documents based on
method definitions. This was intended to avoid splitting in the middle of code structures
where context would seemingly be more important. However, methods can also be arbitrar-
ily long, and it was soon found that this did not reliably produce small enough units to use
as input for the model.

The CodeT5+ model had an associated a tokeniser that was used to prepare any input
by converting it into tokens. This tokeniser provided an option to return a specific number
of tokens at a time. We used the tokeniser to prepare each javap document as a sequence
of 512-token chunks. Each of these chunks was input into the code understanding model
to produce one embedding vector. Finally, the vectors were combined by calculating their
arithmetic mean, which is a way to combine information from multiple embeddings with-
out increasing their dimensionality [24]. This resulted in a single embedding representing
the full javap document: figure 3.1 visualises the process. Compared to the approach used
for the proof-of-concept, where only the first 512 tokens were considered, this approach was
more appropriate for the BinEq dataset. This is because the entirety of each javap document
was used to generate the embedding, rather than just the first 512 tokens. The 512-token
limit was acceptable when using the toy dataset, which consisted of short javap documents
generated from Java classes that were written specifically for experimentation. Comparing
embeddings based on only the first 512 tokens is obviously problematic in cases where dif-
ferences exist beyond the 512-token boundary. The BinEq dataset consisted of Java classes
taken from open-source repositories, which were not written with our use case in mind and
in many cases went well beyond the 512-token limit.

Embeddings: Generating embeddings was the most time-consuming and resource-heavy
step in the process. Once generated, embeddings could be stored and re-used without hav-
ing to regenerate them. However, changes to the embedding generation process (such as
supplying different parameters to the tokeniser) did require new embeddings to be gener-
ated for each bytecode document.

A significant challenge of calculating multiple embeddings per bytecode document was
that the total number of embeddings being generated was much higher than before, because

16

Bytecode
document

Tokeniser

Multiple 512-
token chunks
Multiple 512-
token chunks
Multiple 512-
token chunks

CodeT5+ model

Multiple
embeddings

Multiple
embeddings

Multiple
embeddings

Arithmetic mean

Combined
embedding

Figure 3.1: Flow chart showing the process of using a code understanding model to create
an embedding for a Java bytecode document.

some classes required hundreds of embeddings to represent them. Many machine learning
operations benefit from the use of a graphics card (GPU or Graphics Processing Unit) due to
the GPU’s ability to perform calculations in parallel and the prevalence of machine learning
libraries that make use of this capability. This comes at the cost of having to send data to the
GPU and back, but that is generally outweighed by the gain in performance. A GTX 1080
graphics card was used to reduce the time taken to generate the embeddings for each javap
document. Once generated and combined, the final embeddings were stored to avoid the
need to re-generate them.

It had been noted earlier that different embeddings could be produced from the same
input depending on the environment in which the model ran. For this reason, all embed-
dings were calculated in the same way using the same hardware and operating system.
This would prevent any irregularities arising from differences between machines and the
resulting embeddings.

The CodeT5+ model’s tokeniser provides the option to set a ‘stride’ value. When split-
ting an input into tokenised chunks, the stride can be used to help preserve cross-chunk
context by including some surrounding context (overlapping tokens) in each chunk. Find-
ing a suitable value for the stride option is a question in itself and the cost of generating
embeddings would have made this relatively expensive to experiment with, so it was left
unused. The results of this project could likely be improved through use of the stride option.

3.4.2 Classification

The proof-of-concept used a cosine similarity calculation in combination with a threshold
value to classify pairs of binaries as EQ or NEQ. While this was sufficient to demonstrate
preliminary results, the BinEq data contained more complex data and more granular labels,
requiring a more sophisticated classifier.

Random forest is an ensemble classification algorithm, meaning that it combines multi-
ple classifiers to determine an output. It works by generating decision trees based on ran-
domised subsets of the data, then taking a ‘majority vote’ from among them [25, 26]. Com-
pared to single decision trees, random forests have better overall classification accuracy and
are less likely to overfit. This is because errors made by individual trees are balanced out
by the ensemble. Random forests are robust to noise and outliers and also reasonably quick
to train, making them a practical choice for various applications. The implementation from
the scikit-learn library was used for classification [27].

An issue when moving from the cosine similarity calculation to any other method was
that the classifier had to operate on pairs of embeddings. This was straightforward when
calculating cosine similarity, but there was the question of how to combine embeddings so
they could be treated as a single input. Possibilities included summing or concatenating
the embeddings. Another alternative was to use a ‘Siamese’ architecture where the two
embeddings were treated separately until the last step, where a contrastive loss function was

17

used to arrive at the final outcome. The approach had been used with success [20]. During
development, the concatenation approach was taken because it was simple and avoided
the potential data loss incurred through summing. This was implemented using NumPy’s
hstack function [28].

The random forest is an example of a supervised learning algorithm, meaning it must be
trained on labelled data before use. Initial classification runs were performed by splitting the
dataset into testing and training sets using an 80:20 ratio. The training set (80%) was used
to train the random forest, and the testing set (20%) was used to evaluate its performance.
Withholding a percentage of the dataset for evaluation purposes is a best practice in machine
learning [29]. While it reduces the total amount of data available for training, it allows us to
understand how well the model can generalise to unseen data. It is possible for a classifier
to suffer from overfitting problems where it effectively recognises specific instances of the
data and what the associated labels are, instead of learning patterns in the data and basing
classification decisions on those. Such a model will be less effective at classifying data that
is not in its training set. Withholding the test data from the model until evaluation time is a
way of revealing such problems by showing how it performs on previously unseen data.

Label Training Set (80%) Testing Set (20%) Total Pairs
EQ 14,404 3,596 18,000
NEQ 9,757 2,445 12,202
Total 24,161 6,041 30,202

Table 3.3: Example breakdown of dataset split into training and testing data (80:20).

Parameters for the random forest classifier were identified using a grid search. This
technique searches a grid of options to find the set of parameters that produces the best
outcome. A random seed parameter of 489 was used for repeatable results.

Data selection: The BinEq dataset contains 622,029 labelled pairs of classes. Due to the
expense of calculating embeddings, only a small selection of the data was used. However,
the selection was complicated by the fact that the subgroups within the dataset were im-
balanced. Notably, the NEQ3 group contained only 202 pairs. It was vastly outweighed by
the other groups: EQ with 465,858 pairs, NEQ1 with 14,384 pairs and NEQ2 with 141,585
pairs. An initial attempt to classify 10,000 randomly selected pairs resulted in zero instances
of NEQ3 appearing in the test data. Since the NEQ3 group concerns vulnerability patches, it
is particularly relevant to the issue of supply chain attacks. It is the group that most closely
represents the scenario where malicious behaviour is introduced through the build envi-
ronment. For this reason, it was important for this group to be represented in the selected
data.

Consideration was also given to the subsets within the EQ group. As described previ-
ously, the EQ group contains pairs of Java classes built with compilers of varying similarity
to each other. The classifier was expected to be able to easily identify pairs built with the
same compiler as EQ. Identifying this relationship between two built binaries would pro-
vide some assurance that both originated from the same source code. However, the ability
to identify binaries built with different compilers as EQ would provide a different type of
value. For example, in cases where the integrity of a compiler is in question, verifying that
it produces two EQ binaries is of little value compared to verifying that it produces a binary
EQ to a known good (or even just separate) compiler. This is also more valuable in situations
where the exact build environment used to produce a particular binary is unknown or not
reproducible.

The final data selection was done by taking all 202 NEQ3 pairs and equal numbers from
the other NEQ sets and three subsets of EQ. The makeup of the dataset is presented in table

18

Data subset Number of pairs
EQ-SameMjCompVer 6,000
EQ-SameComp 6,000
EQ-DiffComp 6,000
NEQ1 6,000
NEQ2 6,000
NEQ3 202
Total 30,202

Table 3.4: Makeup of the dataset used for evaluation.

3.4. Aside from NEQ3, pairs were selected in a pseudo-random way by using a seeded
random number to order all pairs before taking a specific number of pairs starting from a
specific index. This approach was intended to randomise the selection but allow the dataset
to be grown by taking further selections without selecting the same data twice.

Cross-validation: To address the imbalanced representation of the NEQ3 group, strat-
ified 10-fold cross validation was used. K-fold cross validation is a way of splitting data
into testing and training sets so that all data is used for both training and testing (though
the training and test sets are always kept separate). In 10-fold cross validation, each ‘fold’ is
generated using a 90:10 split for training and testing. The part that makes up the 10% testing
data is different for each fold. The model is trained and tested on each fold for a total of ten
runs: effectively, ten instances of the model are trained and evaluated. The final results are
reached by averaging the results from all ten instances. This practice helps combat problems
such as overfitting that can be less obvious when the test data does not vary. Stratification
modifies K-fold cross validation so that classes are distributed evenly across the folds. This
was done to ensure that NEQ3 data would be included in a similar amounts in every test
set.

10-fold cross validation was trialled against 5-fold cross validation, which uses an 80:20
split for testing and training data. Providing more training data can generally be expected to
improve the performance of a classifier, but this comes at the cost of limiting the amount of
testing data and potentially the accuracy of performance scores. In this case the amount of
data could simply be increased except for the NEQ3 label, for which only 202 instances were
available. Since the classifier’s performance on NEQ3 was relatively poor, using a 90:10 split
was hoped to improve it by maximising training data. 10-fold cross validation was found to
provide only minor improvement in accuracy over 5-fold cross validation.

3.4.3 Metrics

To get a more detailed view of the classifier’s performance, the standard performance met-
rics of precision, recall and F1 score were calculated. Precision and recall are closely related
metrics that are calculated separately for each label. Each prediction made by the classifier
is considered ‘positive’ if it predicts that label and ‘true’ if it is correct.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

Precision measures the classifier’s ability to assign a specific label correctly; it asks, when
the classifier makes a prediction, how often is it actually correct? A high precision score

19

shows that there are few false positives. Recall measures the classifier’s ability to identify as
many instances of a label as possible from among the other data points. A high recall score
shows that there are few false negatives. Precision can be inflated by being more selective
about assigning a label, but this can result in a lower recall score. Recall can be inflated by
assigning a label more generously, but this can result in a lower precision score.

F1 score is the weighted harmonic mean of precision and recall. A high F1 score shows
that a model is good at identifying both positive and negative cases. It is a metric that
assumes we aim to maximise both precision and recall equally. The generalised form of
the F1 score is the F-beta score, where the value of β sets the balance between precision and
recall [30]. We can favour precision by setting the β value (usually 1) less than 1, or to favour
recall by setting it greater than 1.

Fβ =
(β2 + 1) · Precision · Recall

β2 · Precision + Recall

Modifying β can provide a way to report certain labels more conservatively. A relevant
scenario where this would be beneficial is in creating tools that raise alerts for human con-
sideration. In this scenario, reporting too many false positives would reduce the user’s trust
in the tool and possibly result in them ignoring it, so it may be beneficial to let some false
negatives slip through in order to retain the user’s trust. This could be done by using a
model with a high F0.5 score, which prefers precision over recall by setting β to 0.5.

20

Chapter 4

Results

The classifier’s performance was evaluated across several tasks. A binary classification task
was used to test its ability to distinguish EQ from NEQ, and a multiclass classification task
was used to test its ability to identify the different subsets within EQ and NEQ. Sequential
tasks were used to identify NEQ pairs within the dataset, then extract them and test perfor-
mance on classifying them into the subsets of NEQ. The same dataset was used throughout.

4.1 Binary Classification

The primary test was a binary classification task to label pairs of Java classes as either EQ or
NEQ. This addresses the matter of detecting binary equivalence. The results are shown in
table 4.1 and figure 4.1.

The classifier was able to correctly identify most pairs of classes, achieving an overall
accuracy score of 92%. This shows that machine learning techniques can be applied to Java
bytecode to identify binary equivalence with reasonable accuracy.

Label Precision Recall F1 F0.5
EQ 0.94 0.94 0.94 0.94

NEQ 0.91 0.90 0.91 0.91

Table 4.1: Scores for the binary classification task: EQ vs NEQ.

4.2 Multiclass Classification

For a more granular test, the same dataset was used but with six different labels identifying
the subsets of EQ and NEQ. This was a more difficult task that asked the classifier to iden-
tify different varieties of equivalence, such as whether pairs were compiled with the same
compiler and major version number. As could be expected, the overall accuracy score was
much lower at only 69%. However, this gave us more insight into what types of differences
were easier or harder for the classifier to identify. Table 4.2 and the confusion matrix in fig-
ure 4.2 show the results from this test. We see that NEQ3 items are often labelled wrongly:
the confusion matrix shows that the classifier could not easily distinguish between the dif-
ferent subsets of EQ. Its performance on the NEQ1 and NEQ2 subsets remained reasonably
high, but the recall score for NEQ3 was very low, meaning that most NEQ3 instances were
misclassified as something else.

Figure 4.2 shows that the classifier performed best on the NEQ1 (API changes) and NEQ2
(mutation testing) groups. As could be expected, it was relatively poor at distinguishing

21

Label Precision Recall F1 F0.5
EQ-DiffComp 0.50 0.47 0.48 0.47

EQ-SameComp 0.52 0.47 0.49 0.51
EQ-SameMjCompVer 0.65 0.66 0.65 0.65

NEQ1 0.84 0.97 0.90 0.87
NEQ2 0.91 0.91 0.91 0.91
NEQ3 0.95 0.10 0.18 0.35

Table 4.2: Scores for the multiclass classification task: subsets of EQ and NEQ.

between the different EQ labels. For our research problem we do not value the ability to
distinguish between subsets of EQ as highly as the ability to distinguish between EQ and
NEQ. For security uses there may be additional value in being able to distinguish between
subsets of NEQ, particularly NEQ3 (vulnerability patches), but the classifier often failed to
identify items as NEQ3.

In the multiclass classification task, the NEQ3 pairs were more often assigned one of
the EQ labels than their correct label. This can be attributed to the lack of training data for
NEQ3 compared to the other groups. Because there are not many instances of this label, the
classifier does not have as many opportunities to learn patterns associated with it and how
it differs from the other labels. This could be addressed through collecting or generating
new NEQ3 instances; however, NEQ3 data is collected through manual processes that make
it particularly expensive to acquire.

4.3 Sequential Classification

Another test was run on the output of the binary classification test (EQ vs NEQ), to take the
identified NEQ pairs and further classify them as NEQ1, NEQ2 or NEQ3. This effectively
reduced the multiclass task to only three possible labels, which was expected make it easier
for the classifier. However, its performance on NEQ3 was not greatly improved, with a large
portion of NEQ3 items being filtered out at the binary classification step. Table 4.3 and figure
4.3 show the metrics from this test. In figure 4.2, which shows the results of the multiclass
task with all six labels, we see that the NEQ3 group was often misclassified as one of the EQ
labels. Figure 4.3 shows that when the EQ labels are not in consideration, the NEQ3 pairs
are still misclassified. Even though the binary classification task could be considered easier
than the multiclass task, NEQ3 pairs were classified (or misclassified) in similar numbers.

Label Precision Recall F1 F0.5
NEQ1 0.88 1.00 0.93 0.90
NEQ2 0.94 0.99 0.97 0.95
NEQ3 0.94 0.43 0.59 0.76

Table 4.3: Further classification of pairs identified as NEQ.

22

Figure 4.1: ROC curve for the binary classification task: EQ vs NEQ.

Figure 4.2: Confusion matrix for multiclass classification task: subsets of EQ and NEQ.

23

Figure 4.3: Further classification of pairs identified as NEQ.

24

Chapter 5

Discussion

This project applies machine learning techniques to the task of identifying binary equiv-
alence. It is motivated by the issue of cybersecurity breaches arising from compromised
build environments. While the results are generally positive, it is important to consider
whether the solution is able to address binary equivalence from a cybersecurity perspective
and what would be needed to progress towards a full solution.

5.1 Identifying Vulnerabilities

The classifier often failed to correctly identify pairs labelled NEQ3, which have behavioural
differences due to vulnerability patches. We could see this because the recall scores for
NEQ3 were low, and confusion matrices showed that it was often misclassified as some
other label. However, the precision scores for NEQ3 were relatively high at 0.95 for the
multiclass test and 0.94 for the NEQ subsets test. This means that when the classifier did
identify a pair as NEQ3, it was usually correct. Given the small amount of data available
for NEQ3, it is difficult to draw strong conclusions from this result. However, we can look
to other evidence that machine learning models are able to identify code features relating to
security vulnerabilities.

Claude 3 Sonnet is a multimodal LLM that can process both images and text and has been
shown to be able to identify insecure code. In [31] the authors identified feature activations
in Claude that related to certain topics. Topics ranged from specific (Amelia Earhart, the
Golden Gate Bridge) to more abstract concepts including security vulnerabilities, bugs and
backdoors. Claude was able to relate the concept of backdoors to images of covert record-
ing devices and could be induced to write a program containing a backdoor by forcing the
relevant feature activations well beyond their normal levels. We do not know whether the
Salesforce CodeT5+ models have similar capabilities or whether any information regarding
vulnerabilities was encoded in the embeddings. However, the capabilities demonstrated by
Claude show that large language models can assist in identifying security vulnerabilities, so
it is probable that they can be used to identify NEQ3 pairs.

5.2 Explainability

An explainable system is one where the reasoning behind a specific output can be identi-
fied. This property is highly valuable because it allows human beings to understand why
and how a system makes decisions. As described previously, a major component of the ver-
ifiable builds approach to binary equivalence is to explain and document non-equivalences,
a task which is carried out by humans. This is done to enable independent verification and

25

auditing [7]. Automated systems intended to supplement or provide an alternative to this
process should also support verification and auditing. This could be achieved through high
explainability.

A major obstacle for the use of large language models, including our use of embeddings,
is their lack of transparency. LLMs are highly complex, making use of many-layered neural
networks and being trained with millions or billions of parameters. This makes it difficult
to trace or reconstruct their processes in a way that humans can understand; for example,
to establish whether the output of an LLM is plagiarised. For comparison, consider the
random forest that was used for classification. The individual decision trees that make up
the random forest are highly explainable because they are essentially flow charts. An entire
random forest is less explainable due to the high number of trees and their randomness, but
the relative importance of input features can be calculated to provide some insight into the
process. However, an LLM infers features from its training data rather than taking them
as input the way a random forest does, so the same calculation cannot be applied. The
explainability of LLMs is an area of active research: the previously mentioned paper on
Claude is just one example [31, 32].

Our solution is currently not explainable, but developments in the explainability of large
language models may resolve this going forward. Potential applications for the current solu-
tion could be to search large collections of binaries and flag any items of concern for further
review. Automated software analysis techniques could be used to identify and prove the
existence of non-equivalent behaviours. For example, an existing technique for automati-
cally identifying malicious binaries is to run them in an isolated environment and observe
their behaviour [33]. This could reveal the non-equivalent behaviours of flagged binaries.
Another possibility is to use a test generation framework such as Randoop to automatically
generate tests for flagged pairs of binaries [34]. If a test could be found to produce different
results for each binary, it could serve as proof of non-equivalent behaviour. This would sup-
port verification and auditing without requiring the large language model to be explainable.

26

Chapter 6

Conclusion

This project tested the potential of machine learning techniques to identify binary equiva-
lence in Java classes. To do this, we took the text representation of each Java class’s bytecode
and used a code understanding model to generate an embedding. A random forest classifier
was used to classify the embeddings as EQ or NEQ.

The results showed that the Java classes could be identified as EQ or NEQ with an ac-
curacy of 92%. Subsets of NEQ could be identified the majority of the time with good F1
scores for the NEQ1 and NEQ2 groups. However, performance on the NEQ3 subset was
relatively poor. This can be attributed to the low representation of NEQ3 data in the dataset.
Aside from obtaining more data, it could potentially be addressed by adjusting the classifier
parameters to penalise misclassification of NEQ3 items.

There are several steps that could be taken to improve the results of this research. Due to
time and resource constraints, only a small amount of all the available BinEq data was used.
It is likely that providing more training data to the classifier would improve its performance.
The embedding generation process may benefit from use and fine-tuning of the tokeniser’s
‘stride’ setting, as explained in section 3.4.1. There are many methods of classification that
could be used as alternatives to the random forest algorithm and may produce better results.
A more specialised code understanding model may exhibit better performance: while the
CodeT5+ model produced good results, a model trained specifically on bytecode might per-
form even better. However, there are broader issues that would not be addressed by simply
improving classification performance.

While the results show that the code understanding model can be used to identify bi-
nary equivalence, the outputs are not explainable at this time. Given the importance of
transparency in current approaches to supply chain security, a lack of explainability limits
the application of this solution. This would be helped by using an explainable code under-
standing model. There are ongoing efforts exploring this with other large language models
such as Claude [31]. Alternatively, software analysis techniques could be developed to pro-
vide proof of non-equivalent behaviours without requiring explainability.

A different area for further research would be to find out whether the use of a code un-
derstanding model is as effective for other programming languages. This could be useful
in domains where the Java programming language is not prominent, such as systems pro-
gramming. There are languages that share the use of Java bytecode and the Java Virtual
Machine, such as Kotlin and Groovy, where our approach could be expected to produce
similar results. There are also languages that use the same general principle of running
bytecode on a virtual machine, such as JavaScript and C#, and languages such as C++ and
Rust that can be compiled to an intermediate representation using LLVM [35]. Future work
could investigate whether code understanding models can identify binary equivalence for
these languages. However, until there is a way to provide proof of non-equivalences, the

27

outcome of that research will also be limited by a lack of transparency.
The results from this project were not sufficient to show the reliable detection of compro-

mised binaries, which were represented by the NEQ3 group in the dataset. It is likely that
this can be done, given the ability of LLMs such as Claude 3 Sonnet to identify and create
code vulnerabilities [31]. However, Claude’s capabilities were shown in a limited way as
part of a research effort into explainability, so we did not see how broad its understanding
is. Further research could explore different classes of vulnerabilities to see which ones LLMs
are able to detect.

In conclusion, this project demonstrates the potential of a large language model to iden-
tify binary equivalence in Java classes. However, further work must be done to enable ex-
planation, documentation and verification of the output. With these elements in place, we
will be able to improve the transparency and security of our software supply chains.

28

Bibliography

[1] K. Thomson, “Reflections on trusting trust,” Communications of the ACM, vol. 27, no. 8,
pp. 761–763, 1984.

[2] J. Martı́nez and J. M. Durán, “Software supply chain attacks, a threat to global cyberse-
curity: Solarwinds’ case study,” International Journal of Safety and Security Engineering,
vol. 11, no. 5, pp. 537–545, 2021.

[3] “Assured oss.” https://developers.google.com/assured-os. Accessed: 2024-04-22.

[4] “Maven central repository.” https://central.sonatype.com/. Accessed 2024-10-13.

[5] A. Rybalov, “On the strongly generic undecidability of the halting problem,” Theoretical
Computer Science, vol. 377, no. 1, pp. 268–270, 2007.

[6] B. Godlin and O. Strichman, “Regression verification: proving the equivalence of sim-
ilar programs,” Software Testing, Verification and Reliability, vol. 23, no. 3, pp. 241–258,
2013.

[7] Y. Shi, M. Wen, F. R. Cogo, B. Chen, and Z. M. Jiang, “An experience report on produc-
ing verifiable builds for large-scale commercial systems,” IEEE Transactions on Software
Engineering, vol. 48, no. 9, pp. 3361–3377, 2022.

[8] J. Dietrich, T. White, M. Abdollahpour, E. Wen, and B. Hassanshahi, “Bineq-a bench-
mark of compiled java programs to assess alternative builds,” Sep 2024.

[9] J. Dietrich, T. White, M. M. Abdollahpour, E. Wen, and B. Hassanshahi, “Oracles for the
equivalence of java bytecode,” Dec 2023.

[10] “Software bill of materials (sbom).” https://cisa.gov/sbom. Accessed: 2024-04-22.

[11] U. S. Food and D. Administration, “Cybersecurity in medical devices: Qual-
ity system considerations and content of premarket submissions.” https:

//www.fda.gov/regulatory-information/search-fda-guidance-documents/

cybersecurity-medical-devices-quality-system-considerations-and-

content-premarket-submissions, Sep 2023. Accessed 2024-09-28.

[12] “Supply-chain levels for software artifacts.” https://slsa.dev. Accessed: 2024-04-22.

[13] “Reproducible builds.” https://reproduciblebuilds.org/. Accessed: 2024-04-22.

[14] X. de Carné de Carnavalet and M. Mannan, “Challenges and implications of verifi-
able builds for security-critical open-source software,” in Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC ’14, (New York, NY, USA), p. 16–25,
Association for Computing Machinery, 2014.

29

[15] J. Xiong, Y. Shi, B. Chen, F. R. Cogo, and Z. M. J. Jiang, “Towards build verifiability
for java-based systems,” in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, ICSE ’22, ACM, May 2022.

[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,”
Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[17] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. H. Hoi, “Codet5+: Open code
large language models for code understanding and generation,” arXiv preprint, 2023.

[18] Z. Liu and S. Wang, “How far we have come: testing decompilation correctness of c
decompilers,” p. 475–487, 2020.

[19] Oracle, “javap.” https://docs.oracle.com/javase/8/docs/technotes/tools/

windows/javap.html. Accessed 2024-05-30.

[20] M. M. Abdollahpour, “Semantic equivalence of java bytecodes,” 2024.

[21] M. Ghasemisharif and J. Polakis, “Read between the lines: Detecting tracking javascript
with bytecode classification,” p. 3475–3489, 2023.

[22] T. Thongtan and T. Phienthrakul, “Sentiment classification using document embed-
dings trained with cosine similarity,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Student Research Workshop (F. Alva-Manchego,
E. Choi, and D. Khashabi, eds.), (Florence, Italy), pp. 407–414, Association for Compu-
tational Linguistics, July 2019.

[23] Oracle, “Oracle java se support roadmap.” https://www.oracle.com/nz/java/

technologies/java-se-support-roadmap.html, Mar 2024. Accessed 2024-09-26.

[24] J. Coates and D. Bollegala, “Frustratingly easy meta-embedding – computing meta-
embeddings by averaging source word embeddings,” 2018.

[25] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 10 2001.

[26] A. Parmar, R. Katariya, and V. Patel, “A review on random forest: An ensemble classi-
fier,” in International Conference on Intelligent Data Communication Technologies and Inter-
net of Things (ICICI) 2018 (J. Hemanth, X. Fernando, P. Lafata, and Z. Baig, eds.), (Cham),
pp. 758–763, Springer International Publishing, 2019.

[27] scikit-learn developers, “Randomforestclassifier.” https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
Accessed 2024-09-26.

[28] N. Developers, “numpy.hstack.” https://numpy.org/doc/stable/reference/

generated/numpy.hstack.html. Accessed 2024-09-26.

[29] I. Muraina, “Ideal dataset splitting ratios in machine learning algorithms: general con-
cerns for data scientists and data analysts,” in 7th international Mardin Artuklu scientific
research conference, pp. 496–504, 2022.

[30] Y. Sasaki, “The truth of the f-measure,” Teach Tutor Mater, 01 2007.

30

[31] A. Templeton, T. Conerly, J. Marcus, J. Lindsey, T. Bricken, B. Chen, A. Pearce, C. Citro,
E. Ameisen, A. Jones, H. Cunningham, N. L. Turner, C. McDougall, M. MacDiarmid,
C. D. Freeman, T. R. Sumers, E. Rees, J. Batson, A. Jermyn, S. Carter, C. Olah, and
T. Henighan, “Scaling monosemanticity: Extracting interpretable features from claude
3 sonnet,” Transformer Circuits Thread, 2024.

[32] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M. Du,
“Explainability for large language models: A survey,” 2023.

[33] S. Jamalpur, Y. S. Navya, P. Raja, G. Tagore, and G. R. K. Rao, “Dynamic malware anal-
ysis using cuckoo sandbox,” in 2018 Second International Conference on Inventive Commu-
nication and Computational Technologies (ICICCT), pp. 1056–1060, 2018.

[34] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for Java,” in
OOPSLA 2007 Companion, Montreal, Canada, ACM, Oct. 2007.

[35] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation,” in Proceedings of the 2004 International Symposium on Code Gen-
eration and Optimization (CGO’04), (Palo Alto, California), Mar 2004.

31

