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Udderly Advanced:
Al’s Leap Into Milk Analysis

Annie Cho

Abstract—Milk adulteration remains a significant challenge in
the global effort to combat food fraud, particularly in developing
nations where limited screening infrastructure exposes consumers
to serious health risks. While developed countries often employ
chromatography and spectrometry techniques for detection, these
methods are often impractical in resource-constrained regions
due to financial limitations and lack of specialized equipment.
‘Udderly Advanced’ addresses this issue by introducing a novel
Al-based solution to detect water—the most prevalent milk
adulterant—through the analysis of droplet evaporation images
and use of an enhanced feature extraction pipeline. ML models
capable of detecting dilution with up to 98.6% accuracy and
0.985 ROC-AUC scores have been produced, bridging the gap
in comprehensiveness, accessibility, cost-effectiveness, efficiency,
and scalability left by traditional and alternative AI methods.
Rigorous evaluation, combining both qualitative and quantitative
measures, ensures the models’ effectiveness in real-world settings.
Ultimately, ‘Udderly Advanced’ offers a promising solution for
improving milk quality assessment in areas where conventional
methods are not feasible.

Index Terms—milk, adulteration, machine learning, droplet
analysis, accessibility, public health, developing countries.

GLOSSARY
Al Artificial Intelligence
CcvV Computer Vision
DL Deep Learning
DT Decision Tree
FCM Full Cream Milk
KNN K Nearest Neighbours
LOO Leave-One-Out Cross Validation
LR Logistic Regression
MC Monte Carlo Cross Validation
ML Machine Learning
MLP Multi-Layer Perceptron
NBC Naive Bayes Classifier
P+ Protein Plus Milk
RFM Reduced Fat Milk
RL Reflection Line
ROC-AUC Receiver Operating Characteristic Area Under the Curve
SP Stout’s Pipeline
SVM Support Vector Machine
uIp Udderly Improved Pipeline

I. INTRODUCTION
A. Motivation

HE dairy industry has experienced significant global
growth over the decades, with cow’s milk emerging as
a versatile, nutritious, and highly sought-after commodity [1].
However, the dairy industry faces challenges concerning adul-
teration, the deliberate contamination of foreign substances
into milk. Adulteration can occur at various stages of the
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TABLE I: Potential Contaminants in Milk [2]

Contaminant | Motivation Potential Health Risks

Water Increases profits and Acute or severe malnutrition,
milk volume. diarrhoea, typhoid.

Melamine Increases profits, falsely | Kidney stones and failure, infant
elevates protein content. | death, urinary stones, crystalluria,

bladder cancer, toxic poisoning.

Urea Increases profits, falsely | Digestive issues, kidney damage,
elevates protein content, | diarrhoea, ulcers, impaired vision.
extends shelf life.

Hydrogen Extends shelf life Gastritis, intestinal inflammation,

Peroxide without refrigeration. diarrhoea, vomiting, nausea.

Soap/ Increases profits, Gastro-intestinal and respiratory

Detergent improves appearance. complications, hypotension, cancer.

supply chain system—often by unscrupulous providers seeking
to maximise profits, but also from misguided efforts to improve
hygiene or ignorance regarding appropriate drug adminis-
tration practices [2], [3]. Substances range from seemingly
innocuous water and whey to harmful additives like melamine,
urea, soap, and hydrogen peroxide. This compromises the
quality and safety of milk, posing substantial risks to consumer
health and eroding trust in dairy products. One notorious
case is the 2008 Chinese milk scandal, where nitrogen-rich
melamine was added to milk to artificially inflate protein levels
and deceive the nitrogen-based checks used to indicate milk
quality. This malpractice resulted in 300,000 hospitalisations
and 6 deaths among infants who ingested contaminated milk
formula [2]], [4]], highlighting the severe health consequences
of consuming adulterated products and the need for robust
detection methods.

B. Problem Statement

Adulteration is widely condemned as unethical and illegal
in many jurisdictions [5]]. Regulatory bodies like New Zealand
Food Safety impose penalties to deter these practices; however,
consumers in developing countries (e.g., China, Sudan, India)
remain vulnerable due to poor access to high-quality products,
limited education about food safety, and inadequate regulatory
oversight [2], [6].

Detecting adulteration in developing countries poses numer-
ous challenges due to the vast scale of milk production, milk’s
complex composition, and the extensive range of potential
contaminants seen in Table I. Cow’s milk contains both
nonvolatile milk solids and volatile mediums that complicate
the detection of foreign substances—approximately 87% water
and 13% protein, fat, carbohydrates, and minerals [[7], [8].
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Purely motivated by financial greed, water emerges as
the most pervasive adulterant due to its free, unregulated,
and abundant availability [3]]. Typically sourced from taps or
ponds, water dilution not only reduces the milk’s nutritional
value but also heightens the risk of ingesting waterborne
pathogens [2]. A 2011 survey by the Food Safety and Stan-
dards Authority of India exposed water as the leading adul-
terant among the staggering 68.7% of milk products failing to
meet quality standards [2]], [3[]. Similar studies revealed water
adulteration in 73% of milk samples analysed in Pakistan and
over 95% in Sudan [2], [6]. The addition of sophisticated
adulterants like rice flour, melamine, and detergent can subse-
quently restore the viscosity of diluted milk, deceive nitrogen-
based protein tests, and conceal contamination.

Notably, the lack of standardised testing and equipment
in developing countries significantly hinders detection ef-
forts. Traditional analytical methods (e.g., chromatographic
separation, spectroscopic analysis) provide high quantitative
accuracy [9] but are time-consuming, expensive, and demand
advanced instrumentation and skilled personnel—limiting their
use in resource-constrained environments [3]]. For example,
amidst the 2007 Brazilian milk scandal, where products
adulterated with oxygenated water, hydrogen peroxide, and
caustic soda were sold to unsuspecting consumers, only one-
third of products were inspected by national consumer health
programme authorities [2]. This incident evidences the inef-
ficiency and incapacity of government inspection systems in
resource-constrained regions and the critical need for accessi-
ble detection methods to effectively regulate milk quality.

C. Solution and Deliverables

As such, Artificial Intelligence (AI) emerges as a solu-
tion that minimises the need for manual labour, time, and
specialised equipment [[10]. ‘Udderly Advanced’ introduces a
novel machine learning (ML) approach to classify adulterated
milk. Through the experimentation and development of six
ML algorithms—K Nearest Neighbours, Decision Tree, Naive
Bayes Classifier, Logistic Regression, Support Vector Ma-
chine, and Multi-Layer Perceptron—a highly accurate model
has been produced, capable of distinguishing untampered full
cream milk from water-contaminated samples.

This process begins by capturing the spatio-temporal char-
acteristics of evaporating droplets through a sequence of
profile images. Using a solution developed by a previous
researcher as a foundation, these images are then processed
through a feature extraction pipeline, specifically reformed for
detecting adulteration. This transformation generates a singular
feature set by measuring the pixel heights of the droplet at
regular intervals across its width. Subsequently, the refined
data is utilised by the ML models to differentiate between
diluted and pure samples.

Bridging the gaps left by both traditional and alternative
Al methods, the final solution satisfies its five non-functional
project requirements. Focusing on practical use in developing
countries, these requirements are:

o Comprehensiveness: Effectively addresses key aspects
of adulteration detection itself. This includes detailed

capture of droplet dynamics, development of traceable
systems resilient to variability, and precise classification.

o Accessibility: Utilises broadly available equipment and
technology, ensuring ease of use for individuals with
minimal technical expertise in resource-constrained en-
vironments.

o Cost-Effectiveness: Offers an affordable alternative to
costly traditional methods and Al solutions, minimising
expenses in apparatus and technological infrastructure.

« Efficiency: Delivers rapid results through lightweight,
computationally-efficient ML algorithms. Suitable for de-
ployment on accessible but lower-capability devices like
smartphones.

o Scalability: Adaptable to accommodate increasing vol-
umes of milk production.

From these project requirements, the following applicable
measurable performance specifications are addressed:

o Development of the droplet dataset only requires a basic
camera, substrate, and milk droplets while the ML task
utilises free, open-source software libraries.

o The models are runnable through a Python command-line
interface that outputs relevant performance metrics to an
external CSV file, along with logging of system status
and error messages.

¢ Six ML models were trained, achieving up to 98.6% ac-
curacy and 0.985 ROC-AUC for dilution detection, along
with 89.5% accuracy and 0.978 ROC-AUC for classifying
diluted droplets among three legitimate milk types. This
meets the project’s target of over 90% accuracy and
demonstrates competitive performance to benchmarks set
by comparable Al-driven approaches.

o High-performing models are as compact as 1.56 KB and
can operate in as little as 54.1 ms (7.7 ms per sample
prediction) on standard hardware, enabling potential de-
ployment on resource-limited devices, like smartphones.

o Lastly, optimisation upgrades to a baseline computer
vision pipeline significantly improved feature extraction
for varied droplets and conditions, boosting processing
success rates from an initial 50% to 86%.

D. Environmental and Sustainability Issues

The project addresses three United Nations Sustainable
Development Goals [11]: SDG2 Zero Hunger, SDG3 Good
Health and Wellbeing, and SDG9 Industry, Innovation, and
Infrastructure. Firstly, by developing robust adulteration detec-
tion methods, the project partly ensures food safety, a critical
component of food security outlined by SDG2. With 1/3 of
people worldwide facing moderate to severe food insecurity,
protecting milk—a growing and essential nutritional resource
in developing countries [2]—from adulterants secures the
health and nutrition of populations with less stringent food
safety standards. Secondly, in line with SDG3, the project
aims to wholly prevent health hazards linked to consuming
tainted milk, as seen in the 2008 Chinese milk scandal. Early
detection safeguards public health, preventing direct effects
experienced by 57% of people who consume adulterants [[12]]
such as illnesses, hospitalizations, and deaths. Lastly, moving
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beyond traditional methods to more comprehensive, accessi-
ble, cost-effective, efficient, and scalable Al solutions partly
supports SDG9. Al solutions that cover the weaknesses left by
traditional analytical methods contribute to building resilient
infrastructure in the milk industry.

II. BACKGROUND RESEARCH
A. Relevant Terms

While often conflated, Al broadly refers to machines’ abil-
ity to emulate human-like intelligence via algorithms, while
the ML subfield enables algorithms to learn iteratively and
generalise to new data without explicit programming [13].
Deep learning (DL), a subset of ML, utilises multi-layered
neural networks to identify and learn complex patterns in
vast, complex datasets. In this context, a model refers to
an instance of an algorithm. Models make predictions after
training on datasets with distinctive features, often including
target variables for supervised learning tasks. Lastly, computer
vision (CV) enables machines to interpret information from
visual media, such as digital images or videos [13]].

B. Literature Review

The organised patterns arising from droplet evaporation
yields valuable insights into the droplet’s internal proper-
ties [14]. Proteins, fats, and other substances drastically influ-
ence resulting pattern and drying process, as pictured in Figure
[Il As such, the droplet’s shape over time (i.e., spatio-temporal
data) can indicate potential adulterants, motivating the use
of CV and AI to detect irregularities in a comprehensive,
accessible, cost-effective, efficient, and scalable manner. An
evaluation matrix of the related works against these five
dimensions can be found at Appendix A.

Fig. 1: Resulting pattern of a full cream milk droplet. The
evaporation process has left behind a residue of fats and
proteins on the substrate.

1) ML/DL on Spectral Data: While our project centres on
evaporation-based methods, spectral research provides valu-
able benchmarks for assessing the efficacy of our more ac-
cessible, cost-effective, and scalable approach. For example,
Neto et al. integrated spectrometry with ML/DL to detect
adulterants [|15], achieving promising performance on a bi-
nary classification problem with Linear Regression (79.62%
accuracy) and Convolutional Neural Network models (96.76%
accuracy and ROC-AUC score of 0.9985). Despite this, the
cost and limited availability of spectrometers and DL, coupled
with the need for specialised knowledge, hinder its use in
developing countries.

2) Identifying Static Droplet Patterns: Investigating milk
stains to detect adulterants, Kumar et al. [8] observed distinct
patterns during the evaporation of normal, diluted, and urea-
contaminated milk. They revealed that adulterants lead to
chemical crystallisations and the disruption of “coffee-ring”
depositions in unadulterated stains. Requiring only a substrate
and a smartphone, their method can visually detect adulteration
without sophisticated infrastructure, making it a crucial start-
ing point for designing accessible and inexpensive solutions
for developing countries. However, relying on manual inspec-
tion rather than CV and ML—which the proposed solution
does—introduces variability, human error, inefficiency, and
scalability limitations. While the study provides a foundational
step, it is an incomplete solution for practical application.

3) Imagery and ML on Static Droplet Patterns: Replac-
ing the manual inspections used in Kumar et al.’s solution,
Harindran et al. developed a feed-forward neural network to
classify diluted milk droplets based on their drying patterns,
achieving ~85% accuracy on bird’s-eye images [16]. Similarly,
Pérez-Calabuig et al. applied DL to categorise cow’s milk
adulterated with water, goat’s milk, and sheep’s milk [17].
Their ResNet50 model, trained on 10,400 overhead images un-
der varying light conditions, reached accuracies of 93.5% and
93.2% under light and dark conditions, respectively. Both ap-
proaches boost efficiency and scalability through automation,
while open-source tools like Python and TensorFlow minimise
monetary costs. However, ResNet50’s 50-layer architecture
demands substantial resources, making it impractical com-
pared to more lightweight models like those employed in this
project. Additionally, static bird’s-eye imagery fails to capture
temporal changes in droplet patterns, necessitating improved
feature extraction techniques to prioritise comprehensiveness.

4) Feature Extraction and ML on Static Droplet Patterns:
Andalib et al. approach this similar CV task using point-
by-point analysis of the droplet profile [18]. Naive Bayes
Classifier and Bagged Decision Tree models were trained on
measurements of the droplet’s diameter and contact angle,
captured at a single time point ¢ within a predefined period 7T'.
The models achieved accuracies of 75% and 96%, respectively.
Andlib et al.’s method offers notable advantages. Translating
the visual droplet data into a format suitable for computer
analysis enables accessible and cost-effective processing, mit-
igating the risk of human error. ML also ensures consistency,
efficiency, and scalability in classification. However, similar
to Handridan et al. and Pérez-Calabuig et al.’s image capture
approach, a disadvantage lies in the fragmentation of the
droplet into discrete states rather than viewing it as an evolving
entity, as proposed in the project.

5) Identifying Temporal Droplet Patterns: Suh et al. present
an alternative CV approach [[19]]. Their method diverges from
the project’s solution in two key facets: droplets are again
observed from a birds-eye perspective rather than in profile,
and a limited set of spatio-temporal features are extracted
using a DL intermediary, instead of generating feature sets
from individual droplets. Despite reducing time and manual
effort in analysing dynamic droplet behaviour, this approach
has two disadvantages. Firstly, it fails to fully depict the
evolving shape from a birds-eye angle, in which profile would
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provide more intricate insights. Secondly, the reliance on DL
incurs significant expenses that diminish its accessibility and
cost-effectiveness, particularly in computational resources and
necessary expertise. Nevertheless, Suh et al.’s research remains
pertinent as they explicitly monitor spatio-temporal features,
a fundamental aspect of the project’s solution.

6) Feature Extraction and ML on Temporal Droplet Pat-
terns: Lastly, expanding upon prior research into temporal
data, Stout et al. investigated ML to classify milk types [20],
providing a locally-developed foundation for this project to
improve upon. Their method involves placing droplets on a
substrate and capturing a sequence of profile images docu-
menting the evaporation process over 7' frames. A feature
extraction pipeline then records the pixel height of the droplet
at k regular intervals, generating a matrix of the droplet’s
spatio-temporal features. The vector representation of the
matrix is subsequently used for training.

Among six models trained on the extracted data, the Logistic
Regression model notably achieved up to 96.3% accuracy
and a ROC-AUC score of 0.999. Leveraging profile images
offers a more precise representation of the droplet’s evolu-
tion, while the use of non-invasive image capture techniques
eliminates the need for expensive and sophisticated infrastruc-
ture, enhancing practicality for widespread adoption. While
Stout et al’s research addresses a simpler problem, their
CV method demonstrates effectiveness within their research
context and shows promise for this project’s more complex
task of detecting adulterants. As such, their findings inform
this project’s development and their performance metrics will
serve as valuable benchmarks for evaluating this project’s
improvements in addressing a more challenging problem. A
complete results table from Stout et al.’s study can be found
in Appendix B. However, their method exhibits three main
weaknesses in both its inherent design and application for
adulteration detection:

1) Their use of up to 1200 images per sample necessitates
substantial processing power and storage, an issue that
falls outside the scope of this project.

2) The feature extraction pipeline has been tested exclu-
sively on standard off-the-shelf milk droplets in highly-
controlled environments, which is difficult to reproduce
precisely. To uphold accuracy and reliability, the pipeline
must be resilient to environmental factors such as vari-
ations in lighting, distance, and angle—requirements
currently unmet. Furthermore, there are additional com-
plexities specific to detecting adulterants that are un-
addressed in the study, such as the quicker evaporation
rates of diluted droplets, which could impact processing.

3) The feature extraction pipeline lacks effective error
handling and reporting capabilities.

Therefore, to fully address these last two limitations, the
project also focuses on: a) further developing their pipeline
to accommodate variations in environment and droplet com-
position, and b) implementing improved error handling and
reporting functionality.

7) Final Benchmarks: The benchmarks used to evaluate the
project have been summarised in Table

TABLE II: Final Benchmarks [|15]], [20]

Author | Model Accuracy | ROC-AUC | Limitation
Neto | Linear Regression 79.62% N/A Use of spectrometry
Neto | Convolutional 96.76% 0.9985 | Use of spectrometry
Neural Network and DL
Stout | Logistic Regression | 96.30% 0.999 Not for adulteration

C. Tools and Methodology

1) Methodology and Development Process: This project
adopts a hybrid methodology that combines the strengths
of the Waterfall methodology and Agile practices, accom-
modating to the project’s well-defined requirements while
remaining flexible to evolving needs. Comprising five main
development stages—planning and research, data collection
and pre-processing, model selection and design, training and
evaluation, and refinement—the project progresses sequen-
tially with clear milestones that the Waterfall methodology
encapsulates well, facilitating periodic reviews to monitor
progress against predefined goals. Emphasis is placed on
formal documentation, including meeting minutes with sum-
maries and action items, and a risk register outlining risks
and mitigation strategies. Waterfall also ensures a structured
and smooth project closure, producing final documents and
formally concluding project activities. Agile principles are
integrated within each stage, promoting iterative development,
continuous feedback, and adaptive planning. While not all Ag-
ile practices (e.g., stand-up meetings) have been adopted, the
project still adopts iterative cycles of planning, execution, and
review. Larger components are decomposed into smaller units,
aimed to be completed within two-week iterations and tracked
as Git issues. To align with project goals and uphold clear
communication, regular meetings with project supervisors and
Stout, when available, are held at the end of each iteration to
discuss challenges and plan the next set of tasks.

2) Git: Git is an indispensable development tool used to
track changes in source code. In an Agile context, Git’s
flexible branching and merging features enable experimenta-
tion without disrupting the main codebase, aligning with the
principle of iterative development. By representing tasks as
granular Issues and tagging them to different project stages,
Git also enhances project organisation. In a Waterfall context,
Git effectively manages the sequential development process by
controlling versions for each stage, and serves as a centralised
location for easily accessible documentation.

3) Programming Language: Python was selected due to
its extensive libraries tailored for developing effective ML
and CV solutions. Python’s simplicity and strong community
support make it easy to learn, enabling developers to overcome
challenges more quickly. Compared to other languages, Python
strikes an ideal balance with its performance and library
support. This marks its superiority over R, which excels in
statistical analysis and offers ML packages like caret but
performs substantially slower. Similarly, while Julia stands out
for its intuitive syntax and high-speed numerical computing,
it lacks Python’s popularity and extensive resources. Compar-
isons of the languages can be found at Appendix C.
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TABLE III: Python Libraries (used to benefit the development process)

Library Usage Advantages Disadvantages Alternatives
Scikit-Learn | ML algorithms and tools. To be used | Intuitive, extensive documentation, May not be as efficient for TensorFlow and PyTorch (more
in the model selection, design, easy to use, wide range of pre-built huge datasets. complex).
training, and evaluation stages. algorithms.
OpenCV CV and image processing. Used in the | Comprehensive image processing and Steeper learning curve, Scikit-Image (less comprehensive
predefined feature extraction pipeline. | feature extraction functions, fast, easy | complex for simple tasks. functionality); PIL (simpler but less
to handle large image datasets. powerful).
NumPy Numerical computing and array Efficient array operations, broad Less intuitive syntax for SciPy (built on NumPy and not
operations. functionality, widely used. complete beginners. standalone).
Pandas Data manipulation and analysis. To be | Powerful DataFrame object, easy data | Can be slow with huge Dask (more complex); Vaex (newer
used throughout most of the develop- | manipulation, cleaning, and exploratory | datasets. and less mature).
ment process, especially in the data data analysis.
collection and preprocessing stages.
Matplotlib Data visualisation. Highly customisable, extensive plotting | Verbose syntax, can be slow | Seaborn (used sparingly, built on
capabilities with huge datasets. Matplotlib, and lacks some flexibility).

4) Python Libraries: Python libraries, seen in Table
streamline the development process and are invaluable for this
project’s CV and ML tasks due to their extensive functionality
and seamless integration. Notably, the chosen libraries are
open-source, free, and offer extensive documentation; this
ensures developers, particularly those in resource-constrained
regions, can readily utilise them without financial constraints
or excessive learning curves. Additionally, the large online
community and open-source nature builds upon the solution’s
effectiveness and reliability through collaboration and contin-
ual improvement.

III. DESIGN

A. System Model

Based on the literature review and supervisor consultations,
five requirements guide the design of our Al-driven adulter-
ation detection system for practical use in developing coun-
tries. These requirements are: comprehensiveness, accessibil-
ity, cost-effectiveness, efficiency, and scalability. To address
the issue of adulteration while satisfying these five project
requirements, the proposed system model comprises three
structured phases, as illustrated in Figure [2f 1) Evaporation
Capture, 2) Feature Extraction, and 3) Machine Learning.

Machine
Learning

Feature
Extraction

Evaporation
Capture

A\
\

® ®

Fig. 2: Flow chart of the three stages in the system model.

1) Phase One: Evaporation Capture: In the initial data
collection phase, high-resolution profile images of evaporating
droplets are captured over time, generating an image sequence
per sample. Aligning with the project principles of comprehen-
siveness, accessibility, cost-effectiveness, this phase focuses on
employing readily available, simple, and inexpensive equip-
ment to thoroughly capture temporal droplet behaviour. This
process is coordinated by the project’s secondary supervisor.

Fig. 3: Droplets captured as they evaporate over time 7.

2) Phase Two: Feature Extraction: This extensive imagery
forms the basis for the second phase, where the image se-
quences are subsequently processed through a pre-established
feature extraction pipeline. This transforms the images into a
singular, quantitative feature set that characterises the evolving
shape of the droplets. In response to the limitations iden-
tified in existing literature—including the unscalable nature
of manual detection [8]], dependence on incomprehensive
static data [[16]—[18], and the inaccessibility, high costs, and
inefficiency of spectrometers and DL [[15]], [[19]—this phase
prioritises all five project dimensions.

Stout et al.’s CV approach, which demonstrated success in a
related problem, has been adapted to address the unique chal-
lenge of adulteration detection instead. Utilising an enhanced
adulteration-focused feature extraction pipeline, the images are
cropped, the reflection line (RL) where the droplet meets the
substrate is located, and droplet heights are recorded at £ = 30
regular intervals. Intervals towards the droplet’s edges are
taken more frequently to capture any nuanced fluctuations that
may provide valuable insights [20]. A matrix of the droplet’s
outline over time is saved as a CSV file.

Fig. 4: Feature extraction process. The RL is first located. In
intervals across the droplet’s width, heights are then
measured from the RL. Each image forms a row of

quantitative data, creating a matrix.
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3) Phase Three: Machine Learning: Finally, this time-
series data serves as input for a selection of supervised ML
classification algorithms to assess their effectiveness in distin-
guishing between pure and diluted droplets. This third phase is
essential for developing an accessible, cost-effective, efficient,
and scalable adulteration detection system—Ileveraging free,
widely available software and lightweight ML algorithms.

Following Stout et al.’s approach, minor pre-processing
steps are applied before training to the CSV data. To mit-
igate variance in observed heights, the droplet heights are
normalised to a range of (0.0, 1.0). This ensures each sample’s
data is relative to its maximum height, which is particularly
useful when relative changes are more significant than ab-
solute physical measurements. Normalisation also improves
the performance of distance-based algorithms [21]]. Irrelevant
timesteps after a specified time point ¢ within 7', are trimmed,
optimally between 600-900, as negligible changes to droplet
topology are observed beyond this point [20]. Lastly, the 2D
matrix is flattened to to meet the ML algorithms’ requirement
for vector inputs.

Next, the Machine Learning phase involves constructing a
flexible Python system capable of executing multiple mod-
els, conducting experiments and analyses, and selecting the
model that best aligns with the project requirements. Two
classification tasks have been selected to represent real-world
adulteration problems.

The primary ML task focuses on classifying between pure
and diluted samples, closely simulating the common adulter-
ation practice in which standard full cream homogenised milk
(FCM) is diluted with water to maximize profits. This fun-
damental problem assesses the models’ ability to differentiate
between the most basic categories before progressing to more
complex analyses, such as detecting incremental dilutions or
the presence of sophisticated adulterants often introduced in
later stages of food fraud. To establish two distinct classes,
the following samples were prepared: (1) Pure FCM and (2)
50:50 FCM/Water.

A secondary four-class problem is also explored to distin-
guish between a broader range of legitimate, market-relevant
milk varieties, adding complexity and aligning the system with
more diverse real-world conditions. This classification task
involves: (1) Pure FCM, (2) 50:50 FCM/Water, (3) Reduced
Fat Milk (RFM), and (4) Protein Plus (P+).

FCM 100%
Water 0%

FCM 50%
Water 50%

Y

Fig. 5: Two classes for detecting diluted droplets from FCM.

B. Design and Analysis

1) Stout’s Pipeline: Despite Stout et al.’s success in clas-
sifying milk types, the original pipeline—hereafter referred
to as Stout’s Pipeline (SP)—struggles with two fundamental
weaknesses. Firstly, SP lacks robustness to environmental
variations and changes in evaporation patterns caused by
dilution, as noted in its review. Variations in camera angle can

FCM 100% _ FCM 50%
Water 0% o Water 50%
RFM 100% P+ 100%
Water 0% Water 0%

Fig. 6: Four classes for detecting diluted droplets from FCM,
RFM, and P+.

obscure the RL, changes in distance may blur edges, inconsis-
tent lighting can impact contrast, and unknown artefacts can
disrupt image clarity. Additionally, as seen in Figure [/, water
introduces volatile elements that accelerate evaporation [8]],
leaving minimal discernable patterns in some diluted droplets
that SP cannot effectively handle.

(a) (b) (c)

Fig. 7: Pure FCM droplet vs. diluted droplet. (a) Pure FCM
droplet at the end of its evaporation process, showing notable
residue. (b) Diluted droplet at the beginning of its
evaporation process. (c¢) Diluted droplet at the end of its
evaporation process, with no residue remaining.

When processing droplets differing in both environment
and composition from Stout et al.’s original samples, several
observable errors frequently arise, including the RL being
detected at the bottom of the image and inaccurate width
calculations. Furthermore, an uninformative “Unable to find
bounds” error occurs wherein the leftmost and rightmost
boundaries cannot be detected, arising when a) the RL cannot
be located (and there are no “bounds” to locate) or b) when
the droplet has faded beyond detection.

The second fundamental weakness is poor error handling
and reporting. With hundreds of images per sample, pinpoint-
ing failures is demanding, and errors lack the sufficient detail
needed for effective troubleshooting. Moreover, SP terminates
prematurely upon encountering errors, and all reporting is
confined to the terminal, which lacks persistence and useful
logging analysis capabilities.

It is evident that an upgrade to SP is necessary for effective
use in adulteration detection, prompting the design of the
UIP—the Udderly Improved Pipeline.

2) The Udderly Improved Pipeline: To address SP’s weak-
nesses, a combination of strategic design approaches is essen-
tial to optimise Phase Two: Feature Extraction. The primary
issue, the lack of robustness, can be further subdivided into
two problems: environmental factors and evaporated droplets.

For environmental factors, image augmentation—like ad-
justing brightness, contrast, and sharpness—can maintain con-
sistent image quality regardless of variability. This is a com-
mon principle in signal processing to reduce noise and enhance
the reliability of image signals [22]]. For instance, histogram
equalisation, a statistical imaging processing technique, can
improve the contrast of an image by redistributing its pixel
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intensity values to achieve a more uniform histogram [23]].
However, applying such augmentation introduces additional
computational overhead, significantly increasing processing
time and hindering scalability as the dataset grows. Given n
images and a time complexity of O(m) per image adjustment,
where m reflects the complexity of the augmentations, the total
complexity for this step becomes O(nm).

An alternative is optimising SP’s hyperparameters for di-
verse environmental conditions. Two independent settings reg-
ulate the droplet-to-background thresholds, sensitive to light-
ing and distance, and two inderdependent hyperparameters
govern the detection of the RL, which can trigger an “Unable
to find bounds” error if the image angle obscures the point
of symmetry. Therefore, tuning incurs a one-time cost with a
complexity of ©(k? + 2k), where k is the size of the search
window. This constant time complexity minimises the impact
on pipeline performance and resource demands compared to
the cumulative costs of image augmentation.

In the second scenario leading to the “Unable to find
bounds” error, SP struggles to handle evaporated droplets,
necessitating a method to determine when to halt processing.
One approach involves continuing processing until the droplet
has visibly disappeared, by reducing the sensitivity of the
hyperparameters that distinguish droplet from background.
However, this introduces the risks of false positives, where
background noise is mistaken for the droplet. Moreover, as a
droplet becomes negligibly small or fragmented, its value to
ML models diminishes, potentially decreasing accuracy and
inflating computational costs without improving data quality.
Instead, to enhance robustness beyond the capabilities of SP,
the UIP will integrate threshold-based checks that monitor
changes in droplet height and width, extending upon the
existing bounds detection. Using the concept of ‘events’ in
redundancy in system design (“‘a particular condition or change
in condition” [24]]), the system can deem the droplet evapo-
rated if any prohibited events occur. This approach ensures
greater reliability through the use of multiple indicators and
allows the process to move forward efficiently.

This brings us to the second weakness: inadequate error
handling and reporting. Four main methods were considered
when encountering an error state triggered by evaporation:

1) Termination

e Method: Terminate the process, as employed by SP.

o Benefit: Avoids unnecessary overhead, prevents potential
downstream errors, optimal for early errors.

o Drawback: Poor data retention, early errors are rare.

2) Graceful Degradation

e Method: Continue to process remaining images and log
errors for later review.

o Benefit: Prioritises data retention.

o Drawback: Remaining images are also unlikely to pro-
cess successfully, especially when evaporation leads to
increasingly faint images.

3) Dynamic Adjustment

e Method: Retry failures with adjusted hyperparameters.
o Benefit: Flexible, prioritises data retention.

RL Found?
(with Tuned
Hyperparameters)

Yes

No
No images
are processed

Fetch Next Image

Evaporated?

£—No
Process Image

(with Tuned
Hyperparameters)

Last
Image?

Yes
Save Processed Imag%
|«—

Y

Log Error
Externally

(If Any) in CSV File

Fig. 8: Flow chart of the UIP used in Phase Two: Feature
Extraction.

e Drawback: Extends processing times, introduces incon-
sistencies, creates performance bottlenecks when errors
persist across multiple images.

4) Save Images

e Method: Halt processing at the error state and save/export
only the successfully processed images. Log errors.

o Benefit: Balances data retention with clear failure bound-
aries, prevents cascading errors, minimal performance
bottlenecks, ensures data consistency, reduces unneces-
sary resource consumption.

o Drawback: Not suitable for early errors.

For its adherence to efficiency, fault tolerance, and resource
optimisation engineering principles, the Save Images design
has been opted over the proposed alternatives. The final
pipeline logic can be seen in Figure

Finally, to improve reporting, an external logging system
that saves detailed logs outside the terminal can allow logs to
be stored, reviewed, and analysed after processing.

3) Model Selection: Selecting models offers a wide array
of algorithms, each varying in complexity, computational de-
mands, and suitability for different types of data. To prioritise
accessibility, cost-effectiveness, and efficiency in Phase Three:
Machine Learning, traditional supervised ML techniques are
preferred over DL models.

DL perform exceptionally well in domains with large and
high-dimensional data, excelling in applications involving
imagery [25[; however, the complexity of DL architectures
exceed this project’s needs and contradicts with its key
principles of accessibility, cost-effectiveness, and efficiency.
ML algorithms, easier to comprehend and implement, benefit
from tools like Scikit-Learn, which provide extensive doc-
umentation and community support, particularly valuable in
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resource constrained regions. Moreover, ML demands less
computational costs compared to DL methods, which often
necessitate high-performance hardware, memory requirements,
and inference time to execute a model on new data [25].
Often occupying gigabytes of storage, this makes DL models
significantly less practical if deployed on less computationally
capable devices.

ML algorithms also execute rapidly and offer improved
interpretability, enabling understanding of prediction rationale
and building trust in their outcomes [25]. Conversely, the
opacity of DL may inhibit their applicability in contexts requir-
ing human oversight, ethical considerations, bias management,
transparency, and establishment of trust with stakeholders.
As such, I propose six ML algorithms for Phase Three: K-
Nearest Neighbours (KNN), Decision Tree (DT), Naive Bayes
Classifier (NBC), Logistic Regression (LR), Support Vector
Machine (SVM), and Multi-Layer Perceptron (MLP).

4) Model Training: Performance metrics will be aggregated
from multiple models to accurately represent the algorithms’
performance. To ensure a comprehensive evaluation across
diverse data partitions, three cross-validation resampling meth-
ods have been selected to be included in the experiments.
This includes: Monte Carlo (MC), which randomly divides the
dataset N times; K-Fold, which divides the data into /N folds
iteratively, training each model on N —1 folds while testing on
the remaining fold; and Leave-One-Out (LOO), which trains
on all but one sample, repeating this process for each data
point [26], [27]. In contrast to holdout evaluation, which splits
the dataset once into a single training and test set, these meth-
ods mitigate overfitting introduced by a single split, optimise
smaller datasets, and yield more reliable results [27[]. The
models will also undergo a series of fine-tuning experiments,
exclusively on the training set, with various hyperparameter
values to determine appropriate settings.

C. Sustainability Considerations

1) Environmental: The selection of lightweight, efficient
ML models mitigates environmental concerns by demanding
fewer computational resources and consuming less energy than
their DL counterparts, which, while effective in classification
tasks, are deemed excessive for this task.

2) Social: The system design fundamentally prioritises
equitable access in developing countries, where high-end re-
sources are limited and consumers are most vulnerable due
to inadequate detection infrastructure. By utilising simple
equipment in Phase One, coupled with accessible and robust
software in Phases Two and Three, this solution provides
a comprehensive method to detect adulteration without the
prohibitive nature of spectrometers and DL.

3) Technical: The system’s modular design supports long-
term maintenance and scalability. By structuring the process
into three well-defined components, each phase can be inde-
pendently updated or improved without requiring major over-
hauls to the entire system. Additionally, system updates can
be implemented through software improvements and model
retraining, avoiding costly and time-consuming hardware re-
calibration or replacement. The ability to adapt the model to

new adulterants or classification tasks by training on new data,
also ensures the system remains technically sustainable and
relevant over time as adulteration practices evolve.

IV. IMPLEMENTATION

The implementation involves constructing the model in
accordance with the phases outlined in the system model. The
code can be accessed through its |GitLab repository,

A. Phase One: Evaporation Capture

Following the preparation of the various milk mixtures,
droplets were transferred to the substrate using a 5-microlitre
pipette and captured in profile at one-second intervals by a
fixed camera as they evaporated. This process could yield up
to 1200 images per sample and take as long as 20 minutes.
The resulting image sequences were subsequently utilised in
the following phases of the project. It is important to note that
this phase was entirely managed by the project’s secondary
supervisor, and I was not directly involved in the evaporation
capture process.

B. Phase Two: Feature Extraction

As detailed in the Design and Analysis section and seen in
Table m the UIP enhances the robustness, error handling, and
reporting capabilities of SP.

TABLE IV: Pipeline Upgrades Overview—From SP to UIP

SP Weakness | Observable Issue UIP Solution
Lack of Inaccurate width/RL Tune hyperparameters to be
Robustness: | calculations, “Unable to | robust to environmental
Environment | find bounds” error if RL | factors, e.g., angle, distance,
cannot be found. lighting, unknown artefacts.
Lack of “Unable to find bounds” | Define a criterion that
Robustness: | error if droplet has determines when a droplet
Evaporation | evaporated. has evaporated.
Inadequate: |Process terminates when | Halt processing and export
Error an error occurs. the successfully processed
Handling images.
Inadequate: | Uninformative errors, External logging system,
Reporting terminal only. detailed messages.
Capabilities

1) Upgraded Reporting Capabilities: This first upgrade
involved integrating an external logging system, prioritised to
facilitate subsequent upgrades through detailed log analysis.
Using Python’s logging library, logs are generated for each run
of the UIP and stored locally, capturing key information such
as image names, timestamps, log levels, and error specifics.

2) Upgraded Robustness for Evaporation: Based on exper-
imental results, I established criteria for determining when a
droplet can be deemed evaporated:

o Its width decreases by more than 15% from its
original size. In successfully processed diluted samples,
the width of the resulting residue typically remains above
97% of its initial measurement at ¢ = 0. A significant
width reduction indicates rapid fading.
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o Its height falls below 20 pixels. The data becomes
negligible at this size and further processing is unjustified.

o The droplet bounds are not detectable.

These thresholds can be further refined to better suit the
dilution problem or adapted for future applications.

3) Upgraded Error Handling: Based on the criterion above,
the pipeline logic was rewritten to halt further image pro-
cessing and complete the export process, thereby preserving
valuable data.

4) Upgraded Robustness for Environmental Factors:
Lastly, four hyperparameters were tuned to ensure accurate
droplet measurements. A search window of 5 was used.

« DROP_PXL_BORDER: The maximum value of a
black-and-white pixel for it to be considered part of the
droplet when determining its height. Default=152

o« NONDROP: The minimum value of a black-and-white
pixel for it to be considered not part of the droplet when
determining the side bounds. Default=225

o RADIUS: The radius of the search area (above and below
a given row) used to identify the RL. Default=10

« THRESH: The maximum allowable difference between
each side of the radius for a row to be considered the
RL. Default=2

The RL is detected by scanning upwards from the bottom
of a reference image and comparing RADIUS pixels above
and below each row. When the difference between these
pixels falls below the similarity threshold, THRESH, that
row is marked as the RL. A small RADIUS risks false
positives, while a larger RADIUS can potentially miss the
RL altogether. Similarly, a higher THRESH may be overly
permissive, whereas lower values demand a greater degree of
symmetry, risking missed detection if such symmetry is absent.
Given their interdependence, a grid search was conducted for
RADIUS and THRESH:

1) Five values for each hyperparameter were defined based

on prior knowledge and experimentation.

2) While controlling the remaining hyperparameters, the 25
combinations were each tested on six diluted samples
and visually evaluated using qualitative assessments:
Excellent, OK, and Poor.

The grid search results can be seen in Appendix D, in which
RADIUS=30 and THRESH=2 emerged as one of the most
robust combination, yielding a 100% Excellent rate.

The original DROP_PXIL._BORDER value of 152 was left
unchanged, but was found to be exclusively employed in
the seldom-used ‘bottom-up’ detection method. The default
‘top-down’ method, which was hard-coded value to 250, was
revised to apply DROP_PXL_BORDER for consistency and
maintainability. A new NONDROP value of 235 also improved
boundary detection for blurrier samples, while maintaining
high performance on well-defined counterparts.

C. Phase Three: Machine Learning

1) Interface: A Python program was implemented to
run with a versatile command-line interface (CLI) utilising
Python’s Argparse functionality. The CLI streamlines the
configuration and execution of various functionalities without

necessitating changes to the codebase, such as setting models,
run counts, seeds, and resampling techniques. Additionally,
logging to external files was set up to record telemetry data,
tracking the models’ performance over time.

2) Preprocessing: To overcome limitations in Stout et al.’s
existing four-class hard-coded solution, a major focus involved
enhancing the system to accommodate classification tasks
with varying number of classes and samples with varying
number of frames. Firstly, samples are dynamically loaded
in from a chosen data directory, treating each subdirectory as
a distinct class. The system processes the droplet CSV files
by selecting relevant timesteps, flattening, normalising, and
imputing missing data with zeroes to prepare them for the ML
models. A notable divergence from Stout et al.’s approach lies
in the enhanced preprocessing flexibility. While the original
method is hard-coded to trim excess timesteps after T = 900,
the proposed solution enables users to define T« via the
command-line, which is essential for accommodating differ-
ent T' values between pure and adulterated droplets. If any
droplet’s T is less than 7', the droplet is padded with its last
observed heights. Additionally, a label-encoding mapping class
addresses Stout et al.’s hard-coded class names (especially
useful when generating visualisations) and facilitates pickling
into byte streams for future use.

3) Models: A Model class was constructed to accommodate
the six models. The fine-tuned settings for the models can be
seen in Appendix E. Models can be run sequentially for N
iterations using the following cross-validation techniques: MC
with a 75% train and 25% test split, K-Fold, or LOO.

4) Performance Metrics: Performance metrics are crucial
for evaluating ML models, offering insights into their predic-
tive capabilities. Outlined in Table [V] the model outputs key
metrics in a CSV file after training, including accuracy, Area
under the Receiver Operating Characteristic Curve (ROC-
AUC), precision, and recall. Confusion matrices are also
provided. Among these, accuracy and ROC-AUC serve as
primary indicators of model effectiveness in the experiments.

Accuracy, which measures the proportion of correct pre-
dictions, provides an intuitive gauge of overall performance
but can be misleading for imbalanced datasets. ROC-AUC,
ranging from O to 1, assesses the model’s ability to discrimi-
nate between classes by evaluating the trade-off between true
positive (TPR) and false positive rates (FPR). This makes it
particularly valuable for datasets with uneven class distribu-
tions, providing a complementary perspective that balances the
inherent weakness of accuracy.

While precision and recall offer insights into the model’s
performance for positive classes, they do not account for
overall predictive accuracy across all classes. Consequently,
accuracy and ROC-AUC serve as more comprehensive metrics,
offering a balanced evaluation of the model’s performance
across diverse scenarios.

Lastly, inference times and model sizes on disk provide
insights into the efficiency and scalability of the models.

5) Experiments: As highlighted in the literature review,
diluted droplets exhibit unique evaporation processes, leading
to distinct drying patterns detectable by ML models [20].
Initially, the ML task focused on binary classification between
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TABLE V: Performance Metrics (TP = True Positive, TN =

True Negative, FP = False Positive, FN = False Negative)

Metric | Definition Advantages Disadvantages
Accuracy A - TP + TN Intuitive; quick overall Misleading in imbalanced datasets;
ceuracy = rp L+ TN 4+ FP +FN performance measure. lacks error type insights (e.g., FF, FN).
ROC-AUC TP FPR — FP Informative for imbalanced More complex to interpret; may not
TPR= TP + FN ~ FP+ TN datasets. reflect specific threshold performance.
Precision | Proportion of TPs among positive predictions. | Important when FPs are costly. Misleading without recall; may
™ overlook false positives in imbalanced
Precision = TP + FP datasets.
Recall Proportion of TPs among actual positives. Important when FNs are costly. Misleading without precision; may
TP ignore false positives.
Recall = ——————
TP + FN
Confusion Breakdown of TPs, TNs, FPs, and FNs. Offers detailed insights; identifies No single performance measure;
Matrix specific error types. complex for multi-class problems.

TABLE VI: Sample Counts for Each Class

Sample Count FCM  Diluted RFM P+

Count 13 14 18 15

FCM and 50% diluted droplets before expanding to a sec-
ondary four-class problem that included RFM and P+. Sample
counts for each class are summarised in Table VI
Stout et al. observed that the variations in heights between
consectutive frames were minimal, suggesting that not all
timesteps are necessary to accurately model the evaporation
process [20]. Timestep selection schemes were proposed,
reducing sample size by extending the time interval between
observations and focusing on the most informative timesteps.
To evaluate the effect of these schemes on the adulteration
detection models, experiments were conducted using two
‘Domain-Guided’ (DG) approaches from Stout et al.’s study.
Given the rapid evaporation of diluted droplets, a custom
Udderly Different method was also developed, capturing more
timesteps at the beginning of the sequence, where changes
in observed heights are the most pronounced. These were
compared with two schemeless approaches, trimming the data
to 900 and 600, respectively.
o« DG Scheme: First 200 timesteps, every Sth from 200-
400, and every 20th from 400-900. Total=265
« DG (Compounded) Scheme: Every 2nd from 0-200,
10th from 200-400, and 40th from 400-900. Total=132
o Udderly Different Scheme: Every timestep from 0-300,
and every Sth from 300-600. Total=360
o Trimmed to 900: First 900 timesteps. Total=900
o Trimmed to 600: First 600 timesteps. Total=600
Lastly, suitable model parameters were determined through
performance evaluations across a range of configurations,
utilising a search window of 5.

V. EVALUATION

A. Results

1) The UIP Results: A performance analysis conducted on
14 diluted droplets revealed that SP and the UIP achieved

success rates of 50.0% (7/14) and 85.7% (12/14), respectively.
All seven SP failures resulted in an “Unable to find bounds”
error—five caused by the inability to detect the RLs and
two due to evaporating droplets. Further examination of the
two UIP failures indicated premature detection of the RLs at
the bottom of the images. These false positives stem from
excessive sensitivity in the THRESHOLD x RADIUS settings,
highlighting the inherent compromise between specificity and
adaptability. Given the unavoidable variability of droplets due
to environmental factors, these results are deemed acceptable.
The UIP was further validated using two pure samples from
Stout et al’s initial dataset.

Moreover, the modifications implemented in the UIP had
a negligible impact on processing times, with the observed
speed difference between SP and the UIP falling within the
acceptable variability of the hardware (207.97 vs. 217.74
seconds for a sample containing 1203 images, resulting in an
approximate difference of 0.008 seconds per image).

Overall, the UIP’s superior performance and its ability
to address SP’s key weaknesses demonstrate its enhanced
suitability for tackling adulteration tasks.

2) FCM-Diluted Experiment Results: Performance metrics
were obtained using MC Cross Validation, averaged across
50 independently trained models with a 75%/25% train-test
split. Compared to LOO, which is overly sensitive to individual
observations, and K-Fold, which may introduce bias from un-
even class distributions, MC provides more stable performance
estimate by reducing single-sample impacts and minimising
bias through repeated sampling. This ensures a reliable, rep-
resentative basis for comparing the following results.

The experimental results from the FCM-Diluted task, sum-
marised in Table revealed that NBC achieved the highest
accuracy of 98.6% and a corresponding 0.985 ROC-AUC
score when trimmed to 900 timesteps. The SVM model also
demonstrated excellent discriminatory ability, reaching a 0.999
ROC-AUC under the same conditions.

These results show competitive performance relative to
established benchmarks—particularly Neto et al.’s Linear
Regression model (79.62% accuracy) and their Convolu-
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TABLE VII: FCM-Diluted Accuracies and ROC-AUC Scores

TABLE IX: 4 Class Accuracies and ROC-AUC Scores

DG Scheme Coml]))oGunded I;Ii‘flti:':lzt nt':]";';; g 1::';;‘& d DG Scheme C011‘1113)0(‘;mded I;Ji‘:f(:i:lzt “t:,n;'(;loe d T:an:oe ¢
Scheme Scheme Scheme Scheme
Model | Accuracy [ ROC | Accuracy | ROC | Accuracy | ROC | Accuracy | ROC | Accuracy | ROC Model | Accuracy | ROC | Accuracy | ROC | Accuracy | ROC | Accuracy | ROC | Accuracy | ROC
KNN 914 [0939| 899 [0.942| 93.0 |0.953| 951 |0.962| 95.6 |0.967 KNN [ 79.1 |0.933| 803 (0935 81.2 [0.933| 86.0 |0.937| 853 |0.956
NBC 89.0 [0.893| 89.7 [0.902( 90.7 |0.906( 98.6 |0.985| 95.7 |[0.951 NBC 752 10.848| 80.0 |[0.901| 743 (0.832 785 |[0.858| 82.0 [0.884
LR 89.6 [0916| 889 [0.926 90.0 |0917( 943 |0.973| 90.3 [0.912 LR 77.6 10924 79.2 |0.958| 78.0 (0931 872 [0.966| 89.5 [0.978
SVM 78.0 (0949| 754 (0972 81.1 |0.988( 90.6 |0.999| 86.3 |[0.998 SVM | 787 |0.956| 80.8 |0.962| 784 [0.958| 83.2 |0.964| 88.1 |0.98
DT 88.9 [0.891| 89.7 [0.905| 89.0 |0.894 919 |0.925| 914 |0.92 DT 747 0.831| 741 |083 | 764 |(0.842( 787 |0.857| 80.5 [0.867
MLP 92.0 (0.908| 939 [0.932| 93.7 |0918| 91.6 | 093 | 913 |0.898 MLP | 873 0944 877 (096 | 844 (0942 79.7 |0.905| 844 |0.945

tional Neural Network (96.76% accuracy, 0.9985 ROC-AUC).
In comparison to the Convolutional Neural Network, the
slight edge in accuracy and comparable discriminatory power
achieved by the NBC model is especially noteworthy, as it
accomplishes this without costly spectrometry equipment or
resource-intensive DL architectures.

Stout et al.’s LR model, although designed for a simpler
problem involving milk types, provides another interesting
point of comparison with its 96.30% accuracy and 0.999 ROC-
AUC. While the NBC slightly outperformed this benchmark
in accuracy, it fell short in discriminative ability. Regardless,
the top-performing SVM model (under the same 900-trimmed
conditions) matched Stout et al.’s ROC-AUC equally.

TABLE VIII: Average Inference Times and Model Sizes
(Trimmed to 900)

DT LR NBC SVM KNN MLP
Size (KB) 1.56 113 451 737 2551 10826
Time (ms) 541 87.8 59.1 57.3 66.0 93.5
Time per Sample (ms) 7.7 12.5 8.4 8.2 9.4 134

The top-performing NBC model also exhibited a relatively
quick inference time (59.1 ms for a test set of size n = 7,
8.4 ms per sample) and compact size (451 KB), making it
a practical choice for real-world applications in developing
countries. Small, fast models are preferred in these settings due
to their lower resource requirements, allowing for deployment
on accessible devices, reducing operational costs, and facilitat-
ing real-time decision-making. In comparison, the DT model
proved even faster (54.1 ms, 7.7 ms per sample) and exception-
ally smaller (1.56 KB) while maintaining high performance
(91.9% accuracy and 0.925 ROC-AUC). Compared to larger
models like MLP, which stores hundreds of weights, and KNN,
which retains training data for its predictions, DT presents
another viable option, especially as dataset sizes increase.

A comparison of the two trimmed approaches with the
timestep selection schemes (see Appendix F) revealed that
the application of schemes, particularly DG-Compounded,
significantly reduced inference times and model sizes. For
instance, 50 independent MLP models employing the 900-
trimmed schemeless approach averaged an inference time of
93.5 ms (13.4 ms per sample) and a model size of 10826
KB. In contrast, the DG-Compounded scheme recorded 34.3
ms (4.9 ms per sample) and 1623 KB—a 63.3% and 85%
decrease, respectively.

However, despite these notable savings, all models except
the MLP experienced minor performance decreases under
schemed conditions. Interestingly, the MLP classifier excelled,
achieving 93.9% accuracy and a 0.932 ROC-AUC with DG-
Compounded, and 93.7% accuracy with a 0.918 ROC-AUC
under the Udderly Different scheme. Nevertheless, the minor
performance deficit in the other models suggests that the trans-
formed data still mostly retains the essential characteristics of
the original dataset.

The reduction in computational demands from the schemes
aligns with the project’s focus on developing lightweight, high-
performing models suitable for resource-constrained devel-
oping countries. Faster and smaller models are essential for
practical applications, particularly on accessible but less capa-
ble devices like smartphones. However, further refinement is
necessary to determine the optimal timestep selection scheme
for diluted data, which could potentially minimise or overcome
the gap between schemed and schemeless approaches.

3) FCM-Diluted-RFM-P+ Experiment Results: Next, the
experiments were performed on the four-class classification
problem, distinguishing between FCM, Diluted, RFM, and
P+. The results can be seen in Table [VII, with supplementary
inference times and model sizes found in Appendix G.

The LR classifier under the 600-trimmed schemeless ap-
proach emerged as the most accurate model, achieving 89.5%
accuracy and 0.978 ROC-AUC. The SVM model, under the
same conditions, achieved a lower accuracy of 88.1% but
demonstrated the highest ROC-AUC score of 0.98, identifying
the positive class correctly across different thresholds. It is
evident that this problem, which aims to align the system with
more diverse real-world conditions, is more complex than the
primary binary classification problem.

Investigating into this slightly poorer performance revealed
that several droplets consistently exhibited high misclassifica-
tion rates, ranging from 50% to 100% across multiple models.
These are seen in Table with its average and maximum
misclassification rate summarised across the six models.

Principal Component Analysis (PCA), a dimensionality
reduction technique that identifies features with the highest
variance, was employed to investigate these misclassifications.
In Figure Pp, the 2D representations of droplet data revealed
two points—Sample 13 and 55—significantly distant from
their respective class majority, indicating a deviation from the
primary trends captured by the principal components. Fur-
ther investigation found that Sample 55 contained substantial
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Fig. 9: PCA and Agglomerative Clustering Dendrogram of FCM, Diluted, RFM, and P+ droplets.
(a) Outlier Samples 55 and 4 have circled in red. (b) Outlier Samples 2, 13, 47, 32, 40, and 41 have been marked in red.

TABLE X: Persistently Misclassified Samples

ID Name Class Avg. Rate  Max. Rate
2 240404D11  Diluted 83.17% 100%
3 240404D12  Diluted 85.57% 100%
13 240423E Diluted 100% 100%
32 221128CP2 P+ 97.92% 100%
40 221217F P+ 51.8% 93.75%
41 221217G P+ 76.58% 100%
47  221128BP RFM 82.98% 100%
55 221219E RFM 85.42% 100%

numerical errors in its initial timestep; however, removing
the erroneous data repositioned the sample within its class
boundaries and notably decreased its misclassification rate to
an acceptable level.

To validate potential outliers, Agglomerative Clustering was
also utilised. This hierarchical clustering technique progres-
sively merges individual data points into clusters based on
similarity, forming a dendrogram seen in Figure Op. The anal-
ysis revealed that frequently misclassified samples exhibited
noticeable distance from their main class clusters. Samples 2,
13, and 47 were considerably distant from their Diluted and
RFM counterparts, while Samples 32, 40, and 41 also showed
similar, but less significant, separation from other P+ instances.

These observations prompted a deeper investigation into
the causes of outlier status and misclassification, particularly
concerning physical characteristics not captured by the spatio-
temporal data, such as volume, contact angle, and wetting area.

While the Evaporation Capture phase aims to transfer 5 mi-
crolitres (uL) droplets to the substrate, this imperfect process
can lead to volume variations from 3uL to 6uL. Although
droplet measurements are normalised based on maximum
height during evaporation, the droplet’s physical characteristics
distinctly affect the rate of evaporation. Droplets with larger
volumes typically evaporate more gradually than smaller ones
due to greater mass, meaning two droplets within the same
class may exhibit similar spatio-temporal patterns while dif-
fering in evaporation rate.

lustrated in Figure [I0} the contact angle at which the

droplet meets the substrate further impacts evaporation dy-
namics. Greater contact angles indicate a more spherical
shape and less spreading, while lower angles allow for a
greater wetting area, accelerating evaporation by increasing
the surface area interacting with the substrate. Volume and
contact angle/wetting area interact in complex ways that can
be unpredictable, introducing variability that inhibits a model
from fully grasping the evaporation process using spatio-
temporal data alone.

(a) (b)

8) [0

Fig. 10: Low vs. high contact angle. Despite having the
same volume (not to scale), droplet in (a) has a larger
wetting area compared to the droplet in (b).

To visualise these factors, three Box-and-Whiskers graphs
(see Figure [TT)) were produced for volume, contact angle, and
wetting area, providing a visual summary of central tendency
and variability within the droplet measurements. Spanning
from the 25th percentile to the 75th percentile, the box rep-
resents the interquartile range (IQR), with the 50th percentile
(median) indicated by a line within the box. Whiskers extend
to the minimum and maximum values within 1.5 times the
IQR from the quartiles, while outliers beyond this range are
displayed as individual points.

Across the three plots, numerous misclassified instances
were positioned on the whiskers, either above or below the
central 50%. Notably, the wetting area graph revealed that
most misclassified instances fall on the lower whisker of their
respective classes. Although these samples remain within the
acceptable variability for their class, the relationship between
their classification and positioning is particularly revealing. For
frequently misclassified P+ samples, the average misclassifi-
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Fig. 11: Three box and whiskers graphs, plotting the distribution of volume, contact angle, and wetting area by class.
Data points identified as persistently misclassified samples have are marked as red Xs.

cation rate ranged from 51.8-97.92%, with 86-96% of these
misclassifications incorrectly predicting them as FCM. This
trend is illustrated in the graph, where these droplets exhibit
smaller wetting areas for their class, situating them within
the central 50% of the FCM box. Similarly, the two Diluted
droplets were misclassified 83.17-100% of the time, with 88-
100% of those misclassifications being falsely identified as
RFM droplets. Although diluted milk contains reduced fats
from added water, aligning its composition more closely with
RFM, its wetting areas also resemble the median of the RFM
class, which likely contributes to its frequent misclassification.

Overall, these findings indicate that variations in physical
characteristics, and consequently evaporation patterns, can
cause droplets to exhibit behaviour akin to that of other
classes. This similarity impedes the models’ ability to precisely
distinguish between classes. Therefore, there is a clear need
for more refined features in future analyses that consider the
physical properties of droplets. Supplementary XY plots of
volume against both wetting area and contact angle can be
seen in Appendix H and I, respectively.

B. Limitations

While the project fulfils the project requirements it sought
out to achieve, it faces two key limitations.

1) Timestep Selection Schemes: The results in the FCM-
Diluted classification task demonstrate a notable performance
drop under timestep selection schemes, highlighting the chal-
lenge of selecting effective timesteps to minimise redundant
data, improve model generalisation, and ensure system effi-
ciency. This issue becomes more complex with the addition
of classes, each with distinct patterns that need thorough
capture. However, relying on schemes based on unadulterated
samples risks overlooking the unique evaporation dynamics
of adulterated samples, which poses a significant limitation.
Developing robust schemes that accurately capture evaporation
patterns in both pure and diluted droplets—or implementing a

dynamic approach to identify the most informative segments
in the time-series—would greatly improve the adaptability,
efficiency, and comprehensiveness of the system.

2) Physical Measurements: The investigation into persis-
tent and unexpectedly high misclassification rates uncovered
the influence of physical properties on evaporation rates.
This exposes a significant limitation in the current system’s
focus on spatio-temporal characteristics without accounting
for these physical factors, thus complicating classification
between classes. Integrating these properties into the data or
standardising evaporation profiles could lead to significant im-
provements to the system’s comprehensiveness. For instance,
scaling evaporation rates by approximating the interaction
between volume and contact angle/wetting area would allow
droplets with varying physical properties to be represented as
how they would exist under standardised conditions.

VI. CONCLUSION AND FUTURE WORK

Overall, ‘Udderly Advanced’ has emerged as a promising
initiative in the fight against milk adulteration, demonstrating
AT’s potential in democratising adulteration detection infras-
tructure in developing countries. The project has reached
significant milestones, including the development of a droplet
dataset requiring only a camera and substrate, and substantial
upgrades to an existing feature extraction pipeline, which
improved accuracy from 50.0% to 85.7%. Additionally, six
computationally-efficient ML models were trained, achieving
accuracy rates exceeding 98.6% for dilution detection and
89.5% for classifying diluted droplets among broader milk
types. These models demonstrate inference times as fast
as 54.1 ms on our test set, with disk sizes as small as
1.56 KB. Further analysis of selection schemes for time-
series data and frequently misclassified droplets has identified
future directions for optimising the dataset. Fundamentally,
the project’s success lies it its ability to bridge the gap be-
tween sophisticated laboratory techniques and practical, field-
deployable solutions, embodying core principles crucial for its
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adoption: comprehensiveness, accessibility, cost-effectiveness,
efficiency, and scalability.

However, the journey of ‘Udderly Advanced’—and the
challenge of adulteration—is far from over. Adulteration in
practice often involves even subtler alterations, with dilution
levels ranging from 2% to 20% [2]. This calls for future
work with more granular and complex dilution ratios, such as:
(1) Pure FCM, (2) 75:25 FCM/Water, (3) 50:50 FCM/Water,
and (4) 25:75 FCM/Water. Additionally, post-dilution adulter-
ants, like melamine, pose a particularly insidious threat and
present more advanced classification problems. To simulate
trickier real-world adulteration scenarios, melamine could be
introduced into 50% diluted FCM at a concentration of 250
parts per million (ppm), far exceeding the New Zealand Food
Safety’s maximum threshold (2.5 ppm) by a factor of 100 [28]];
this first ensures the detection of substantial concentrations
before tackling lower, more challenging concentrations. A
future objective could be to develop a model to classify: (1)
Pure FCM, (2) 50:50 FCM/Water, and (3) 250 ppm melamine
in 50:50 FCM/Water.

These future classification objectives would not only test
the sensitivity of the system but also provide valuable insights
into adulteration levels and types, crucial for regulatory bodies
and the dairy industry alike.

FCM 100% FCM 50% B S
Water 0% Water 50% Patensoce
Melamine 250ppm

Fig. 12: A potential three-class classification problem for
detecting diluted and melamine contaminated droplets.

Lastly, looking ahead, this Al-based approach offers poten-
tial far beyond its current application. By prioritising accessi-
bility and efficiency, the project lays the groundwork for mo-
bile integration. A future is conceivable where a smartphone
application, utilising models developed in this project, can
provide instant milk quality assessments at all points across
the supply chain—from farm to consumer. This vision of
ubiquitous, real-time food quality assessment could transform
global food safety practices, ‘udderly advancing’ milk quality
control in the regions most vulnerable to adulteration.
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