ENGR 489 (ENGINEERING PROJECT) 2024

Tailr: An AI-Powered Outfit Generation App

Georgia Barrand

Abstract—Choosing an outfit each day can feel overwhelming,
leaving many consumers frustrated and underutilising the clothes
they already own. This potentially leads to excess consumerism
and outfit dissatisfaction. Tailr is an Al-driven outfit generation
app designed for women aged 18-34, offering a solution that
empowers users to create stylish outfits from their existing
wardrobe. This could lead to better use of existing clothes,
reducing consumerism and waste, and increasing people’s sat-
isfaction with their own outfits. This project presents three core
deliverables: a software architecture and UX design, a proof-of-
concept mobile app, and a user evaluation of this app. The app
was developed entirely using Flutter/Dart for iOS and Android.
A user evaluation of the app conducted on participants within
the target demographic confirmed that there is a keen market for
this product. Participants found the app to be extremely usable
and intuitive, with 100% of participants stating that they’d use a
fully developed version. An evaluation of the Al tools used found
that the integrated AI returned responses within an average of
2.2s. Overall, Tailr not only simplifies the daily challenge of outfit
selection but also promotes a more sustainable and satisfying
approach to fashion, positioning itself as a valuable tool for
modern, conscious consumers.

I. INTRODUCTION

It’s the perpetual question: “What do I wear?’. The process
of determining what to wear each day is an integral part of
our lives. While some may view this as a frivolous activity,
clothing is our first interface with society and has a significant
impact on our mood, productivity and self-perception [1]]—[4].

However, selecting an outfit for the day is often draining
and time-consuming, leaving many feeling frustrated. In fact,
20% of participants in a poll reported feeling mad or frustrated
when they couldn’t decide what to wear, with 28% admit-
ting to throwing clothes out of frustration [5]]. Furthermore,
according to a Stitch Fix survey, over half of participants
felt overwhelmed when choosing clothing [6]]. These feelings
intensify for important events like weddings, first meetings,
or a night out. On average, women spend 17 minutes per day
selecting an outfit, while men spend 13 minutes [5]. This
accounts for almost a year’s worth of waking hours over
a lifetime. This ongoing struggle can contribute to decision
fatigue — the phenomenon where the quality of decisions
declines as the number of decisions we make increases [7].
Making excess decisions depletes mental resources and has
been linked to a reduced ability to exert self-control, leading to
poorer performance on tasks that require discipline, persistence
and focus [8]].

Moreover, how we dress has been found to impact our
mood, productivity and internal perception. Dressing in a self-
affirming outfit encourages a sense of pride and achievement
[2]. Outfits have been found to both reflect and change
individuals’ moods [2]. In particular, outfits with positive
sentiments were found to foster pride, accomplishment and
resilience. Connotations associated with clothing can also

impact productivity [1f], [3]. The impact of our relationship
with fashion highlights its importance within our personal lives
and broader society [4]. The significant impact of personal
style highlights the need to optimise and accelerate the outfit
selection process to maximise these benefits.

Furthermore, our clothing items are significantly under-
utilised, with only 44% of items worn regularly and 28% left
untouched for over a year [5], [9]. The paradox of choice
when selecting an outfit can lead to people feeling they have
‘nothing to wear’. For example, 61% of Americans struggle
to find something to wear despite having sufficient items [9].
Consumers are driven to continuously purchase new cloth-
ing to simplify decision-making. However, this exacerbates
environmental harm. The fashion industry is estimated to be
responsible for 10% of global carbon emissions [[10]]. To meet
the Paris Agreement’s goal of limiting global temperature
rise, reducing new purchases to five garments per year is
recommended [[I1]. As such, maximising the use of existing
clothing is crucial to achieving this target.

Evidently, the current outfit-selection process is time-
consuming, mentally taxing and driving overconsumption.
Furthermore, this ineffective process hinders individuals from
enjoying the full benefits of a confidence-boosting outfit. This
project presents the solution: Tailr. Tailr is an Al-powered
outfit selection app that takes items that a user already owns
and generates outfits based on provided prompts.

Tailr’s functionality relies on 3 key components: an image
metadata extractor (IME), an outfit-matching AI model, and
an outfit selection model. The IME identifies key metadata
characteristics from the user’s uploaded photos. The outfit-
matching Al model uses this metadata to generate a compre-
hensive set of outfits. The outfit selection AI model selects an
outfit based on information from the provided prompt.

Our user study reinforces the need and desire for Tailr.
Furthermore, the app clearly satisfies usability requirements.
Participants also evaluated two different interfaces for select-
ing an outfit: a freeform AI prompt and a set of property
dropdown selectors. While the Al prompt was preferred, the
results indicated that participants would prefer to have both
interfaces available. However, participants indicated the need
for further refinement of the outfits generated along with
an increased ability to customise the app to their tastes.
Furthermore, a performance evaluation of the Al models used
demonstrates that the app is able to provide satisfactory and
correct responses within an average of 2.2 seconds.

A. Environmental and Sustainability Considerations

Several of the UN’s Sustainable Development Goals (SDGs)
[12] are relevant to Tailr.

Primarily, we must ensure sustainable consumption and
production patterns. Tailr may contribute positively to this



ENGR 489 (ENGINEERING PROJECT) 2024

goal since it encourages users to reduce their consumption
of new clothing. However, the app also needs to use resources
responsibly. This is addressed by storing images as textual
metadata representations in the database rather than storing the
images directly. The images themselves are saved on-device.
This requires significantly less storage space and, therefore,
reduces the amount of database resources used.

Moreover, the number of times that the outfit generation
algorithm is run is minimised. Given that the users’ amount
of clothes is predominantly stable, the outfit generation func-
tionality can be run once, and then the outfit combinations
generated are stored. This outfit store is then queried as the
user provides prompts. When the user adds a new clothing
item, the algorithm is rerun to update the outfit store. This
minimises the number of times the algorithm is run and
thereby the resources used. This also improves the time it takes
for the user to receive a response. The alternative would be to
run the outfit generation algorithm every time the user provides
a prompt, which requires significantly more resources.

While the app encourages better use of existing clothes,
it risks increasing outfit self-consciousness. This may neg-
atively impact users’ mental health (SDG 3) as they are
more conscious of their outfits and compare them to others.
Furthermore, the app may promote increased consumerism as
users may wish to generate more and more varied outfits (SDG
12).

Tailr aims to improve users’ mental health and well-being
by reducing mental load and providing better outfit selection
(SDG 3). However, a key concern is that users’ mental health
may be negatively impacted if the app gives the perception that
their wardrobe is unfashionable. This is mitigated by a flexible
outfit generation algorithm that ensures that outfits are always
generated.

B. Requirements

While this application could be expanded to encompass all
ages and genders, to refine the scope of development and
inform the requirements an initial target audience of women
aged 18-34 was identified. This was due to a variety of reasons.
Firstly, the decision was made to exclude children from the
project due to their unique clothing items, and the increased
ethical complexity of conducting user evaluations with them.
Women were considered over men as typically they have
a broader range and variety of clothing, with most ‘men’s’
garment categories being a subset of ‘women’s’ ones. As such,
if the app were to be expanded to explicitly include ‘men’s’
clothes, it is expected that this would not require a significant
amount of additional work. The age range was limited to 18-
34 as this is the age group most likely to be using shopping
and beauty mobile apps [13]].

To inform the requirements, two key personas were identi-
fied based on the target demographic: ‘Emily’ and ‘Serafina’.
Emily is the primary persona and Serafina is the secondary
persona. The full persona analysis can be found in Appendix
[C] Based on these personas and the overall solution’s goals,
the following requirements guided the project’s development.

1) Functional Requirements: FRI1. The application must
generate a compendium of outfits that adhere to outfit structure

rules (e.g. must only wear one bottom garment) and general
outfit-matching best practices.

FR2. Based on the provided prompt, the application must
select an appropriate outfit from the generated outfit set.
FR3. Users must be able to view all the clothing items that
they have uploaded.

FR4. Users must be able to view all the outfits that they have
favourited.

FRS. The application must extract key metadata about up-
loaded images that accurately describe the clothing item. An
exact list of supported metadata is set out in Appendix
FR6. Users can permanently delete clothing items from their
uploaded items.

FR7. Users can filter the clothing items included in the outfits
selected for them based on weather and temperature.

2) Non-Functional Requirements: NFR1. The application
must provide an outfit selection efficiently when prompted by
the user.

NFR2. The application is deployable on mobile phones
running at or above iOS 17.2 or Android 14.0.

NFR3. The application is functional on mobile phones with
an internet connection, camera hardware, and a screen size of
at least 750px x 1334px.

NFR4. The app’s interface is intuitive and appealing to
women aged 18-34.

NFRS. The app can be interacted with via touch-based
interactions.

NFR6. The application’s interface must align with the
SMASH mobile app heuristics [|14].

NFR7. The application can support at least 200 clothing
items and 1000 generated outfits per user.

II. LITERATURE REVIEW

This literature review primarily focuses on existing work
related to outfit recommendation systems and fashion applica-
tions, as this is at the core of Tailr. Several key terms are used
to understand the examined work.

A. Background

1) Decision Fatigue: As previously mentioned, a key goal
of Tailr is to reduce decision fatigue by reducing the number of
decisions required to select an outfit. This is the phenomenon
that as you make more decisions within a day, the quality
of those decisions declines [7]. There are four key symptoms
associated with decision fatigue: procrastination, impulsivity,
avoidance and indecision. Streamlining choices, delegating de-
cisions, and developing daily routines are key decision fatigue
mitigators. Tailr addresses decision fatigue by delegating outfit
decisions to an external app.

2) Artificial Intelligence (Al): Al is a field of study that
focuses on simulating human-like intelligence using machines.
There are several different methods of accomplishing this.
Many recommendation systems use neural networks. These
are computational models inspired by the human brain, con-
sisting of interconnected nodes (neurons) that process and
transmit information to perform tasks such as classification,
regression, and pattern recognition.



ENGR 489 (ENGINEERING PROJECT) 2024

3) Foundation Models: Foundation models such as Chat-
GPT and Gemini have recently risen to prominence due to
their ability to provide accurate and fast responses to a huge
range of text and image-based prompts. These models are
trained on a vast amount of data which allows them to learn
patterns and relationships between items [15]. This allows
them to then respond by predicting the next item in a sequence
based on the context of previous items and the provided
prompt. While these models could suggest outfits based on
a user’s wardrobe, their general-purpose design makes the
UI cumbersome, and managing uploaded items (e.g., deleting
or updating) would be difficult. However, many foundation
models also have APIs that allow developers to use their
capabilities in a custom context. As such, Tailr can utilise
their capabilities for image metadata extraction and prompt
analysis, as these are complex tasks that would be beyond
this project’s scope to implement from scratch.

4) Search: Search algorithms are step-by-step procedures
used to locate specific data or solutions within a dataset or
problem space. There are two fundamental search strategies:
uninformed search and informed search. Uninformed search
strategies operate solely upon the information provided in
the problem definition and have no indication of whether
a particular exploration direction is ‘more promising’ than
another [16]]. In contrast, informed search strategies utilise
problem-specific knowledge beyond the problem definition to
find solutions more efficiently [16]. One such method is a
greedy best-first search - an algorithm that uses a heuristic
function to determine what decisions to make. A well-defined
search algorithm can simulate system intelligence with less
complexity than an explicit artificial intelligence approach.

B. Related Work

1) Fashion Recommendation Systems: Fashion recommen-
dation systems are a substantial area of research, with multiple
techniques being employed to explore item compatibility and
item recommendation. Work within this area typically focuses
on achieving one or more of the following tasks: item pairing
recommendations, fill-in-the-blank (FITB) outfit completion
and outfit recommendation.

The item pairing task focuses on suggesting individual
clothing items of a specified category that pair well with
a specified item. For example, if provided a pair of pants,
recommend a top. FITB outfit completion builds upon this
task. For this task, the goal is to suggest a suitable missing
item that best completes a partially complete outfit. This
task is typically used to evaluate fashion outfit composition.
Finally, outfit recommendation constructs a complete outfit
from scratch. This may be prompted by providing an item
to build the outfit off or may be informed by metrics such as
user attention to particular items.

Existing works have used a large variety of models to
attempt to accomplish these tasks. However, most state-of-
the-art works are based on a deep learning (DL) architecture.

Prato et al. [[17] present a two-stage DL algorithm to accom-
plish FITB tasks. The first stage extracts tensor representation
from multimodal inputs. The second stage leverages the Trans-
former architecture to learn compatibility between clothing

items. Similarly, Sarkar et al. [|18] propose OutfitTransformer,
a scalable framework that uses task-specific tokens and the
self-attention mechanism to learn relationships between items
in an outfit. This is used to accomplish item pairing and
FITB tasks. Both models outperformed standard state-of-the-
art models on the Polyvore dataset. Furthermore, Prato et al.’s
model was evaluated by industry fashion experts who found
the outfits produced to be compatible 88% of the time.

Lin et al. also incorporate a transformer-inspired attention
mechanism in their two-stage neural network OutfitNet [19]]
for personalised outfit recommendations. In the first stage, the
Fashion Item Relevancy network is created which learns the
compatibility between items. In the second stage, the Outfit
Preference network incorporates user attention to generate
personalised outfit recommendations. OutfitNet was also eval-
uated using FITB testing and was able to outperform standard
state-of-the-art models. A key differentiator of this model is its
integration of user attention to inform predictions. Essentially,
the model takes note of how much attention a user pays to an
item and is more likely to recommend outfits with items that
have higher attention. This allows OutfitNet to generate more
personalised predictions that may be more likely to satisfy
users.

Diffusion models are also a significant area of research
for fashion recommendation systems. For example, Xu et al.
propose DiFashion [20], a generative diffusion model for per-
sonalised outfit recommendations. It gradually corrupts images
with Gaussian noise and then uses a conditional denoising
process to generate multiple fashion items simultaneously. The
process is guided by three conditions: category prompt, mutual
compatibility, and user attention based on interaction history.
This model is evaluated on FITB and outfit recommendation
tasks. Again, it was able to achieve superior performance to
other baseline state-of-the-art models.

While all of these models are able to recommend compatible
outfits, they have several key limitations. Primarily, most of the
models proposed are only able to accomplish item pairing or
FITB tasks, rather than outfit recommendations from scratch.
They require the model to be supplied with the majority
of an outfit in order to provide an outfit recommendation.
This wouldn’t address this project’s goal of reducing decision
fatigue as the user would still have to decide the majority of
items within their outfit.

Furthermore, while these models may be able to make
compatible predictions, there is a significant lack of ability
to specify context or user preference. While OutfitNet and
DiFashion use user attention to inform recommendations,
they are unable to use context-specific factors to generate
an outfit. For example, factors such as weather, occasion and
temperature significantly impact the appropriateness of outfits
on a given day. Furthermore, factors such as the user’s mood or
general idea of what they want to wear for an outfit aren’t taken
into consideration. So while these outfits may be to generate
compatible outfits, they are not context-specific and may not
align with the user’s needs.

The models surveyed also appear to be fairly limited in the
matches recommended. In particular, the models don’t appear
to be creative when pairing items based on colour. Many of



ENGR 489 (ENGINEERING PROJECT) 2024

the outfits generated appear to be monochrome or limited to
two colours. Bolder choices like complementary, analogous or
triadic colour combinations don’t appear to be recommended.

Finally, the most evident shortcoming of these models is the
lack of a usable interface for users to interact with. In some
studies, users are able to supply an item for the algorithm
to generate an outfit based on. However, none of the works
examined allow users to provide more complex inputs such
as freeform prompts. Furthermore, they are all tested using
existing datasets rather than allowing users to trial using their
own clothes. Adding this component is essential for these
models to actually provide benefits to users.

Overall, the works demonstrated that DL architectures are
the current state-of-the-art for fashion recommendation tasks.
Several different models have been found to be effective
including Transformer, diffusion and general neural networks.
The majority of these works, however, focus on accomplish-
ing outfit pairing or FITB tasks rather than complete outfit
generation. Furthermore, there is significant scope for further
expanding the models to integrate user preferences, more
experimental pairings and adding a user-friendly interface.

2) Fashion Applications: There is a significant selection
of fashion-related apps available in the current market. These
can include e-commerce, visual discovery, or explicit outfit-
generation apps.

There are several fashion-related e-commerce platforms that
are relevant to Tailr. We focus on evaluating ASOS, Depop and
Stitch Fix. ASOS is an online fashion retail platform targeting
users aged 18-31 [21]. Users can browse and purchase fashion
items via its website and mobile app. Users can filter items
by various attributes or category-specific qualities. Item pages
provide detailed descriptions and styled outfit suggestions.
The app also offers personalised recommendations based on
shopping habits, saved items and recently viewed categories.

Notably, ASOS offers a Style Match tool that allows users
to upload photos for metadata analysis; identifying colour,
pattern, and clothing type to suggest similar items. This
demonstrates that user-taken photos can be effective inputs,
even in non-ideal conditions. For example, a test photo of
black jeans taken on a mixed backdrop still yielded relevant
results (see Appendix D).

Depop is another e-commerce app where users can buy
and sell second-hand or vintage fashion items. It targets a
younger demographic interested in sustainable and unique
fashion choices. While Depop facilitates clothing discovery
and purchases, it does not offer outfit recommendations or
styling assistance. Its focus is on individual items rather than
complete outfits, leaving the styling decision entirely up to the
user.

Stitch Fix provides personalised styling services by com-
bining AI with human stylists to curate outfits for users. The
service ships a box of curated clothing items to the user, who
can keep or return them. While Stitch Fix offers personalised
recommendations based on style profiles, it cannot factor in
users’ existing wardrobes. It also emphasizes new purchases
rather than maximising the use of owned clothing. Tailr’s
approach to suggesting outfits from an existing wardrobe ad-

dresses this gap, offering a more sustainable and personalised
solution by helping users style clothes they already own.

The primary difference between e-commerce apps and Tailr
is the use case. Fashion retail platforms encourage users to
purchase new clothes, without considering whether these items
will match their existing wardrobe or suit their personal style.
While apps like Depop improve on this by reselling existing
clothes, they still promote consumerism. Clothing recommen-
dations are subtly integrated into these apps, with items ranked
higher in search results rather than explicitly suggested. While
apps like Stitch Fix take into account the user’s preferences,
these recommendations don’t take the user’s existing wardrobe
into account. Furthermore, while ASOS’s product images show
items within outfits, this does not help users make better
styling choices, as these outfits are not user-specific.

Visual discovery platforms such as Pinterest are also rele-
vant to Tailr. Pinterest allows users to explore and save ideas,
including fashion inspiration. While Pinterest enables users
to discover styling ideas and curate mood boards, it is not a
fashion-specific app and does not provide personalised outfit
suggestions. It may inadvertently recommend clothing items
based on the user’s saved posts, however, this is not the app’s
primary purpose. Tailr’s structured and goal-oriented approach
to outfit creation contrasts with Pinterest’s broader, inspiration-
focused model.

Finally, Acloset is a key example of an existing outfit
generation app. Acloset allows users to create a digital version
of their closet and create their own outfits [22]. With more than
a million worldwide users, this app demonstrates the value of
Tailr due to its similarity.

However, there are some key distinctions between Acloset
and Tailr. Acloset primarily focuses on users creating their own
outfits. This somewhat simplifies outfit selection as the user
doesn’t have to physically look through their closet, however,
it doesn’t fully alleviate decision fatigue. Furthermore, while
Acloset does have some Al-powered recommendations, these
are limited to outfits based on weather, colour and location.
By allowing users to craft their own prompts, we are able to
suggest outfits using multiple metadata factors, crafting more
specific and tailored outfits.

Acloset emphasises the importance of FR2 and FR7 for
removing the mental load and decision fatigue of selecting an
outfit. These are key requirements that distinguish our app.

Overall, the apps surveyed highlight key UI attributes that
our target demographic values. In particular, simplistic and
minimal design was consistent throughout all the apps. Addi-
tional features such as filtering also help to aid in item discov-
ery, even without precise searches. Furthermore, efficient and
intuitive navigation was key for navigating quickly through the
apps.

Moreover, while our specific use case is unique, these apps
validate the interest in and value of fashion-based apps.

C. Summary of Existing Work

A summary of current existing work in regard to how they
fulfil the established functional and non-functional require-
ments can be found in Tables [ and



ENGR 489 (ENGINEERING PROJECT) 2024

Existing Work | FR1 FR2 FR3 FR4 FR5 FR6 FR7
Prato et al. Partial No No No Yes No No
OutfitTransformer Partial No No No Yes No No
OutfitNet Partial No No No Yes No No
DiFashion Partial No No No Yes No No
ASOS No No No Partial Yes No Partial
Acloset Partial Partial Yes Yes Yes Yes Partial
Depop No No Partial Partial No Yes Partial
Pinterest No No Partial Partial Yes Partial Partial
TABLE I: Comparison of Existing Work Against Functional Requirements

Existing Work | NFR1 NFR2 NFR3 NFR4 NFR5 NFR6 NFR7
Prato et al. Partial No No No No No Yes
OutfitTransformer Partial No No No No No Yes
OutfitNet Partial No No No No No Yes
DiFashion Partial No No No No No Yes
ASOS No Yes Yes Yes Yes Yes Partial
Acloset Yes Yes Yes Partial Yes Partial Partial
Depop No Yes Yes Yes Yes Yes Partial
Pinterest No Yes Yes Partial Yes Yes Partial

TABLE II: Comparison of Existing Work Against Non-Functional Requirements

D. Tools and Methodology

Several key tools enabled the development and assisted in
the engineering process of Tailr.

1) ChatGPT: ChatGPT was leveraged as a development
tool to streamline the Flutter app development process. It
was primarily used to help identify key Flutter components
and libraries for use in the app, which would otherwise have
required time-consuming manual searches to find. This was
especially crucial as I have limited Flutter experience, and
lacked familiarity with the full range of in-built components.
Using these components was key to ensuring design con-
sistency across the app and avoiding unnecessarily rewriting
code. As such, ChatGPT was used to find relevant choices to
select from.

Furthermore, ChatGPT’s ability to generate baseline code
for classes was particularly helpful in kickstarting the coding
process. It was able to provide a basic class template that I
could then build upon. This allowed me to focus on the key
functionality of the app rather than being slowed down by
setup.

However, ChatGPT wasn’t without limitations. While it
excelled at surfacing relevant components and generating
foundational code, it often struggled with the more nuanced
task of integrating these components seamlessly. Occasionally,
it also misinterpreted prompts, leading to suggestions that
didn’t quite fit the intended use case. It also occasionally
recommended out-of-date or deprecated functions or libraries.
As a result, the developer needed to carefully assess each
response, extracting useful insights while filtering out less
relevant or incorrect information. Despite this, the iterative
process of refining responses still offered value, as it helped me
to clarify my understanding of the tools at hand and progress
more quickly than if they had worked unaided.

2) XCode and TestFlight: The development process was
conducted on an M3 MacBook Pro using Apple’s development
tools: XCode and TestFlight. XCode was a key tool for
deploying the app to an iPhone test device, though the initial
setup posed several challenges. One significant issue involved

difficulties in signing the app for approval, as XCode did
not initially recognise the test phone’s certificate. However,
after resolving these setup challenges, XCode proved to be a
reliable and efficient tool for development. It was particularly
useful for archiving builds, which could then be distributed
via TestFlight — Apple’s platform for internal testing.

TestFlight played an important role in facilitating user
testing. Its simplicity allowed the app to be easily deleted and
reinstalled after each test, ensuring that any uploaded data was
removed and the app could be tested in a fresh environment.
This capability also allowed the app to be distributed to
additional testers, expanding the pool of feedback. As a result,
several bugs and usability issues were uncovered that would
likely have gone unnoticed without this broader testing.

3) Methodology: The project followed a rapid prototyping
methodology. Prototypes were created and updated every
week. These were then shown to the project’s supervisors
and relevant ENGR489 students within the target audience for
feedback. In particular, discussions with supervisors focused
on the environmental effects of potential decisions, allowing
us to create an informed and conscious design. Based on
this feedback, changes were made. This methodology was
selected as it is efficient, suitable for an individual project,
and still provides development accountability. Furthermore,
given the novelty and uniqueness of the project, it was key
to trial different implementation methods to determine the
most effective way of doing things. A key example of this
methodology working was when implementing the database.
Initially, Firebase — a NoSQL database — was trialled due
to its scalability and ease of integrating with a Flutter app.
However, upon implementation, it was discovered that Fire-
base’s querying abilities weren’t comprehensive enough for
the app’s requirements. For example, there was no ability to
select distinct values. However, due to the rapid prototyping
methodology, I could rapidly review and evaluate the tool and
pivot to another.

Development was driven by working through a feature list,
tracked using GitLab. Features were broken down into atomic



ENGR 489 (ENGINEERING PROJECT) 2024

Frontend User selects

image(s) to upload

Upload Image

I

User enters prompt Outfit

Extracted image
metadata

| Chat completion API I

Prompt Outfit

Display All Favourited Outfits
Display All Clothes <

about desired outfit

Uploaded image
along with system
and user prompt Y D\
On-Device Relational
Query outfits Database
( — \ User provided | based on
prompt extracted key —_
Image Metadata Extraction terms
Model
[Preparedsetofoutits |
ion Model based on
| image metadata
Outfits

Return all favourited Outfit Selection Model

its

General API
Return all uploaded

images
S—Omne\nce Storage
On-Device Relational Database
Storage

Outfit selected from

- -

generated set

Favourited Outfits

D

Device Document
Storage

Clothing Images

¥

Fig. 1: Application Structure

parts, which were then divided into Issues. From each Issue,
an associated branch and Merge Request were created. Once
the feature was implemented, a self-review of the issue was
conducted before merging the branch.

III. DESIGN

This section details Tailr’s design and the rationale behind
the design decisions made.

Overall, the app uses a layered architecture, where the
presentation layer (frontend), the data access layer (backend)
and the database layer are separated. This allows us to separate
concerns so that each layer addresses a distinct purpose. There
is an additional database layer to store image metadata, outfits
and favourites. Clothing images are stored on-device to reduce
the number of database resources used (aligning with SDG 12)
and to provide data ownership and security.

A. User Interface

The user interface (UI) is primarily responsible for ad-
dressing FR3, FR4, FR6, FR7, NFR4, NFR5 and NFR6. It
is responsible for providing a touch-based, intuitive interface
for the user to navigate the app. As shown in Figure |1} the
UI provides functionality to upload images, prompt outfits,
display favourited outfits, and display all clothes.

The initial design for the Ul was guided by the created
personas (see Appendix [C). The personas identified several
key tasks that the app needed to support: uploading and auto-
matically extracting metadata from clothing images, viewing
and filtering all clothing items, generating an outfit from a text-
based prompt and saving a generated outfit. From this, initial
paper wireframes were created (see Appendix [F). Design
decisions were informed by several factors. Iterative feedback
was solicited from relevant ENGR489 peers within the target
audience of women aged 18-34. Furthermore, relevant mobile
app heuristics such as SMASH [14] and Apple’s Human
Interface Guidelines [23]] were used. The design is deliberately
simple for ease of use, clarity and overall aesthetic appeal.

B. Database

The database is responsible for storing and persisting in-
formation related to clothing items, outfits and favourites. It

is primarily responsible for NFR7, however, it supports all
functional requirements as it provides the data necessary to
perform the required tasks.

For data storage, there were 4 key options considered: a
NoSQL database, a relational database, a simple file and Flut-
ter’s SharedPreferences. NoSQL databases were considered
predominantly due to their ability to scale and handle huge
volumes of data. NoSQL databases are also schemaless, mean-
ing that they have increased flexibility and ability to handle
unstructured data. However, this means that they sacrifice
strong data consistency and complex querying capabilities.
Given that our data is structured, there was no benefit to using
a schemaless architecture. Using a simple file (e.g. JSON,
CSYV, etc.) was also considered due to the small scale of our
data. This would be simpler to implement than a NoSQL or
relational database. However, it would require all querying
capabilities to be custom-implemented, manual data concur-
rency handling, and manual entry index handling. This would
result in a high likelihood of error or inconsistency in our data.
Flutter’s SharedPreferences was considered again due to the
simplicity of implementation. However, SharedPreferences can
only store small-scale, key-value pairs, making it unsuitable
for the scale and complexity of our data. A relational database
was ultimately selected as the data storage method due to
its ability to scale, complex querying capabilities and ACID
compliance.

Furthermore, a key design decision was whether to use
on-device database storage or to create a database server.
Using a database server offers better scalability, centralised
data management, and data backup and recovery. However,
database servers require more infrastructure and would have
significant development complexity. Similarly, on-device stor-
age also offers several advantages. It provides faster data
access, as there is no need to rely on network connectivity or
experience latency from remote database servers. It reduces
the need for constant network traffic, which can lower both
bandwidth usage and power consumption in alignment with
SDG 12. Additionally, on-device storage enhances user privacy
by keeping data locally without the need to transmit it over
the internet. While scalability is limited by each user’s device



ENGR 489 (ENGINEERING PROJECT) 2024

storage, each user’s data scale is relatively small and should
be able to be handled by most modern mobile devices. Due
to these factors, on-device storage was ultimately selected.

C. Backend and Al

The backend is primarily responsible for addressing FRI,
FR2, FR5 and NFRI1. As shown in Figure El, the backend
provides functionality for extracting metadata features using
computer vision, generating the outfit compendium, and se-
lecting an outfit based on a prompt. The backend interfaces
with databases to store and retrieve relevant data.

A key component is the metadata extraction model. Instead
of creating a custom image analysis tool, the application
interfaces with an external AI API. This decision was made
due to the limited scope and timeframe of the project. Cre-
ating an effective image analysis tool is a complex task and
likely a custom tool would produce inferior results to the Al
APIs currently available. To extract the metadata, the app’s
backend sends a request to the API with the respective image
attached. The API then responds with the metadata specified
in Appendix B] in a parseable format.

Furthermore, the app interfaces with an external Al API
in order to extract and infer key information from the user’s
provided prompt. This extracted information is then used to
find suitable outfits that match the extracted criteria.

Finally, the backend is responsible for generating new outfits
each time a new item is uploaded. These outfits are generated
based on compatibility rules regarding colour, weather, tem-
perature, occasion, pattern, and category.

IV. IMPLEMENTATION

Building Tailr involved several key technical decisions and
challenges, from the selection of development tools to the
implementation of its Al-driven backend. This section provides
a detailed account of how the app was implemented and the
process behind this.

A. User Interface

Selecting the right tools for implementing Tailr’s Ul was
crucial for ensuring cross-platform compatibility and ease
of development. There were three key candidates for the
UI programming language: Flutter, Swift, and Objective-C.
These are all languages used for frontend mobile development.
Objective-C and Swift were considered as I have significant
experience with Objective-C, which is also the basis of Swift.
However, this experience was mostly with building on existing
applications. Furthermore, Objective-C has an unusual and
clunky syntax, which may have slowed development. By
comparison, Swift’s syntax is much more simplified.

However, Objective-C and Swift are only compatible with
i0S - meaning that NFR2 would not be met. Flutter, however,
automatically provides cross-platform compatibility, including
i0OS and Android. Additionally, Objective-C and Swift don’t
offer ‘hot-reloading’, meaning that the app needs to be re-
compiled every time a change is made. This would make
development cumbersome. Furthermore, Flutter offers a built-
in ‘refactor’ feature, which allows the developer to instantly
extract components, apply styling, or adjust the layout. This

accelerates the coding process. While I was unfamiliar with
Flutter, it is based on the Dart language, which has a syntax
similar to Java. Furthermore, there is robust documentation
available along with official libraries.

Flutter was ultimately selected as the front-end program-
ming language based on its development features, cross-
platform compatibility, and significant documentation.

The implemented UI successfully provides functionality
to upload images, prompt outfits, display favourited outfits,
and display all clothes. The UI utilises the Material Ul
base components to ensure a consistent, familiar design that
adheres to Google’s Material Design guidelines, providing a
cohesive user experience across platforms. These components
are pre-built, customisable, and highly performant, offering
smooth animations and responsive layouts. Additionally, they
simplify creating accessible apps while maintaining native-
level performance.

A key focus during app implementation was to ensure
it would be aesthetically pleasing to the target audience of
women aged 18-34. This was done by implementing simple,
refined components so that visual clutter was reduced as much
as possible. Decorative features were kept to a minimum so
that the clothes and outfits presented were the focal point of
the app. Furthermore, a purple colour scheme was utilised
throughout. Purple is commonly linked to creativity and
imagination, which aligns with the creative purpose of the
app. Furthermore, it is frequently used across brands that are
marketed towards Gen-Z, who take up a significant portion of
the target demographic [24].

The app also implements light and dark mode colour
schemes. Users may utilise the app at night to generate an
outfit for the following day. As such, offering a dark mode
can help reduce eye strain. Dark mode also allows us to cater
to different user preferences as many users now expect dark
mode as a standard feature, thereby helping to improve user
experience and satisfaction.

The final UI is shown in Figures

B. Database

The overall structure of the database is shown in Figure
There are 4 key tables implemented: clothing items, outfits,
outfit items and favourites. The clothing items table stores
all relevant information about each clothing item. Additional
fields such as image, description, title and date have been
added alongside the metadata specified in Appendix [B| The
outfits table keeps track of outfits added, and its primary pur-
pose is to specify outfit IDs, which can then be used to group
items in the outfit items table. Finally, the favourites table
stores the favourited outfits’ IDs, so that the corresponding
outfits and items can be retrieved from the outfit items and
clothing items tables.

The database serves as the key source of data throughout
the app. This helps to ensure that data is consistent throughout
and that any changes are immediately propagated.

SQLite was ultimately chosen as the relational database
management system to implement the database. It was selected
as it is lightweight, efficient, and reliable for managing local
data storage. Furthermore, it has widespread Flutter support



ENGR 489 (ENGINEERING PROJECT) 2024

CLOSET

+ SHOW FILTERS + ORDER BY

BLACK TAILORED ARGYLE PATTERNED
SHORTS CARDIGAN

ARGYLE PATTERNED ASYMMETRICAL DRAPED
SKIRT TOP

0 &
o+ ¥ 0

Closet Upload Generate Favourites

Fig. 2: Closet Page

CLOSET

+ SHOW FILTERS + ORDER BY

¥ O

Generate Favourites

Fig. 3: Dark Mode Closet Page

Argyle Patterned

- [ ]
Cardigan
A long-sleeved, button-up cardigan with an
argyle pattern in orange, black, and beige.
Category: Jumpers Colour: Orange
Occasion: Casual Patterned: Yes
Temp: Temperate Weather: Any
T+ ¥ 0
Closet Upload Generate Favourites

Fig. 4: Item Page

< Upload Images

No images selected.

Lo

Fig. 5: Upload Page



ENGR 489 (ENGINEERING PROJECT) 2024

Al Prompt @ Dropdown

Enter a prompt for an outfit here...

>

o + 3 V)

Closet Upload Generate Favourites

Fig. 6: Generate Page with Al Prompt Interface

Al Prompt o Dropdown

Category

Any v
Occasion

Any v
Temperature

Any A

Weather

Colour

Any v

Submit

T + pis Q

Closet Upload Generate Favourites

Fig. 7: Generate Page with Dropdown Interface

A w

<

Fig. 8: Generated Outfit Page

Favourites

A I

b; + g Q

Closet Upload Generate Favourites

Fig. 9: Favourites Page



ENGR 489 (ENGINEERING PROJECT) 2024

< Outfit Details []

Fig. 10: Favourited Outfit Page

and documentation, with official Google documentation also
recommending it for on-device storage.

outfit_items clothing_items

%ffé PK | item id
image

description

outfits PK,FK | outfit id

K | outfit id PK,FK | item id

favourites "
title

P

=

favourite id
category

FK | outfit_id

dominantColour

hue

value
chroma

fit

occasion
temperature
weather
isPatterned

date

Fig. 11: Entity Relationship Diagram of Database Structure

C. Backend and Al

Two AI APIs were considered to assist in the development
of the IME and prompt analysis. These were Gemini’s API and
OpenATI’s APIL. They were considered due to their prominence,
affordability, extensive documentation, and reliability.

However, based on preliminary testing, Gemini’s API gave
unexpected and erroneous results when asked to extract meta-
data from a provided clothing image. In some cases, it would
extract the metadata correctly and store it in the desired format,
whereas in others, it would result in an error stating that it

“Couldn’t look at images directly” (as shown in Appendix [E).
OpenAl’s API, however, performed consistently and returned
responses in the requested format. As such, OpenAI’s API was
selected.

To further test the effectiveness of the API, preliminary test-
ing was conducted for the metadata extraction to ensure that
the API returned prompt and accurate responses. Initially, the
GPT-40 model was tasked with generating JSON objects for
a series of images, and while the majority of responses were
accurate, issues such as incomplete responses and incorrectly
formatted objects were observed. Specific trends emerged,
such as consistent invalid values for temperature and dominant
colour. Prompt crafting became crucial to addressing these
issues. However, refining the prompts to constrain the model’s
creativity within the necessary format was difficult. Lowering
the temperature and top-p values helped reduce the variability
in responses, making the outputs more predictable without
losing the richness of detail. These changes minimized error
rates and improved the consistency of metadata extraction.
Nevertheless, this process required careful balancing, ensuring
the model retained its creative edge while producing responses
that fit a structured format.

Following creating the initial prototype, the GPT-40 and
GPT-40-mini models were compared. GPT-40-mini is a
smaller, less complex version of GPT-40. A key benefit is
that it requires fewer computational resources, which directly
translates to lower energy consumption. Furthermore, GT-40-
mini costs US $0.150 per 1 million input tokens, whereas
GPT-4o0 costs $2.50. Testing revealed that while both models
produced similar types of errors, the GPT-40-mini model
demonstrated higher latency and a lower overall accuracy. The
GPT-40-mini was found to take longer to process requests,
likely due to its lower priority for processing and its less so-
phisticated architecture. Additionally, GPT-40-mini exhibited
a higher incidence of errors related to schema adherence, such
as incorrect values for colour value or invalid categories like
“swimwear.”

Ultimately, GPT-40 was selected because of its low latency,
which reduces user wait times and higher accuracy than GPT-
4o-mini. The resource-intensive nature of AI models necessi-
tates considering both accuracy and computational efficiency.
While GPT-40-mini is less resource-intensive per query, its
higher error rate would mean that responses would need to
be regenerated more frequently. This would increase energy
use, making its sustainability benefits negligible. As such,
GPT-40’s superior performance justifies it as the more viable
model for this application. The risks of significant monetary
costs were mitigated by using token limits on both the system
and user prompts, as well as the returned response. The total
amount used across the entire project was US $7.29.

GPT-40 was also selected for extracting key terms and
metadata from the user-provided prompt. This was primarily
due to its faster response times compared to GPT-40-mini.

The API is interacted with using HTTP requests to the
OpenAl chat completions endpoint. Each request consists of a
system prompt and a user prompt. The system prompt primes
the system for how it should respond to the user prompt.
For example, if it should reply with a JSON object. The user



ENGR 489 (ENGINEERING PROJECT) 2024

prompt specifies the exact context or task that the AI should
respond to. In the case of image metadata extraction, the image
itself can be attached to the user prompt in an encoded form.

The custom outfit generation algorithm was implemented
using a greedy best-first search algorithm. A key consideration
when implementing this algorithm was limiting calls to it as
much as possible to reduce power consumption. The outfit
generation model is run each time an item is uploaded to
the app. Starting with the new item, the algorithm iteratively
finds compatible item matches until an outfit is formed. To
limit complexity, at most 15 compatible items can be explored
from each partial outfit. The algorithm terminates when there
are no more partial outfits to explore. Every 100th generated
outfit is then saved to an outfit store. Only storing every
100th outfit is required, as this is a combinatorial problem.
Typical testing of the algorithm generated millions of outfits
which would require excess storage and would be difficult
to efficiently query. As such, only a subset of the outfits are
stored. These outfits are then queried based on the user’s
prompt. Limiting the number of times the algorithm is run
reduces device power consumption and reduces latency when
responding to a prompt, as the outfits are simply queried rather
than generated. Overall, the app can extract metadata about a
provided item and generate its corresponding outfits within
10-20s on average.

Determining the rules that the outfit generation algorithm
utilised was a key challenge when developing the app. Pri-
marily, fashion is incredibly nebulous and particular rules may
not apply to all individuals. Initially, the rules specified that
all items in an outfit had to match exactly in terms of weather,
temperature, and occasion. However, this strict approach re-
vealed a critical flaw: certain attributes were underrepresented,
leaving some items unused entirely due to a lack of matching
options. The rules were then iterated upon to allow for similar
matches. For example, items with a ‘hot’ temperature could
also be paired with ‘warm’ items. Additionally, the initial
colour-matching rules were too lenient, resulting in visually
chaotic outfits with an excessive number of colours. To resolve
this, the colour rules were refined to limit outfits to a maximum
of four colours, ensuring greater coherence. These challenges
underscored the difficulty of balancing algorithmic logic with
the nuanced, often subjective nature of fashion.

D. Testing

The app was primarily tested using an iOS simulator,
which worked well for most functionality but introduced
key challenges. The simulator environment doesn’t perfectly
mirror real device conditions, particularly with persistent on-
device image storage. Initially, images were stored by saving
their directory path as a string in the database, but when
retrieving them, they couldn’t be found because the simulator’s
documents directory name changes on mount. Although the
images still existed, the saved paths were no longer valid. This
issue was resolved by saving only the image file name and
dynamically loading the correct documents directory during
retrieval. However, identifying the root cause of this issue
took significant time to debug, highlighting the limitations of
simulator-based testing.

Furthermore, the simulator is unable to simulate the device’s
camera hardware and as such, all of the image upload func-
tionality could only be tested on-device. Given that the app is
compatible with iOS and Android this introduced additional
complexity. Along with operating system differences, there
is significant variability in camera behaviour across devices.
As such, validating that the image upload capabilities worked
correctly required testing across a range of physical devices.

V. EVALUATION

The success of Tailr is measured through both AI perfor-
mance metrics and user satisfaction. This section presents the
Al and user evaluation undertaken and the key findings from
these. The evaluations were conducted using 476 clothing
items from the A100 dataset [25] and 16945 pre-generated
outfits.

A. Al Evaluation

To ensure effectiveness, the Al tools and algorithms used
must provide a response within a reasonable time frame. To
evaluate this, the outfit selection algorithm was run for 100
iterations for two separate tests. The first ran the algorithm
with the same prompt. This allows us to evaluate the standard
performance and consistency of the outfit selection algorithm.
This testing gave a mean response time of 2.981s with a
standard deviation of 0.803s. The second round of testing used
100 different prompts to asses how the algorithm handled a
variety of prompts. Users may enter a huge range of differ-
ent prompts, and the algorithm should still provide efficient
responses. In this case, the mean response time was 2.237s
with a standard deviation of 1.461s. Both rounds of testing
provided responses efficiently, with limited variance between
the iterations. This helps validate that users will not become
frustrated by excessive response times, which could lead to app
abandonment. The response time is significantly attributable
to the fact that the app queries a pre-existing outfit store
rather than generating new outfits each time. This validates
this implementation decision.

B. User Evaluation

A user evaluation study was conducted to assess the app’s
usability, intuitiveness, and general satisfaction. The key goals
of the study were to validate the need for the app and evaluate
its usability and effectiveness. Furthermore, A/B testing was
conducted on different methods of generating an outfit: a
freeform AI prompt and a set of attribute dropdowns. This
testing aimed to assess participants’ preferences and determine
if either generated better outfits. The study was approved by
the Victoria University of Wellington Human Ethics Commit-
tee with approval HE000028. The study consisted of 3 parts: a
pre-study survey, 30 minutes of app testing, and a post-study
survey.

1) Participants: To align with our target demographic of
women aged 18-34, the study participants were 10 women
aged 18-31 (u=23, 0=4.03). Participants were recruited using
posters across the Kelburn, Pipitea, and Te Aro campuses. As
koha for participating, participants were provided with a $20
supermarket voucher.



ENGR 489 (ENGINEERING PROJECT) 2024

2) Testing Conditions: Testing was in CO255 using an
iPhone 14 Pro running iOS 17.6. Audio and screen recordings
were taken during the testing to keep a record of the actions
performed and any comments made. Manual notes were also
taken. Participants were encouraged to narrate their thought
process and what they expected the outcome of an action to
be before performing it as part of a ‘speak aloud’ protocol.
For testing, the app was preloaded 476 clothing items and
participants were provided with clothes to upload to the
app. This mitigates the ethical issue of the app making any
judgment on the participants themselves.

3) Process: During each testing session, participants were
first presented with a pre-study survey to complete. This
focused on assessing each participant’s level of experience
with mobile apps — in particular fashion apps — and Al tools.
Furthermore, participants were also asked questions regarding
how long it takes them to get ready and their experience
with selecting outfits. This was to validate our hypothesis that
the current process of getting ready is time-consuming and
frustrating. A full list of the questions asked can be found in
Appendix

Following the pre-study survey, participants were asked to
conduct user testing of the app. For the first 15 minutes,
participants were asked to complete a list of tasks. One of
the task sets involved generating an outfit. The presentation
of the two conditions was fully counterbalanced across the
ten participants to avoid carryover bias in the A/B testing. A
full task list can be found in Appendix [G-B| Following this,
participants were asked to freely experiment with the app for
a further 15 minutes

After the testing, participants were asked to complete a post-
study survey. This survey aimed to understand how usable
participants found the app, their experience with the different
interfaces presented for generating an outfit, and their general
sentiments about the app. The first section of the survey
asked participants to rate how much they agreed with a set
of statements using a 5-point Likert scale.

The statements rated by participants are as follows:

1) The user interface was intuitive

2) The application was easy to use

3) I felt confident using the application

4) I needed to learn a lot of things before I was able to use
the application properly

5) I found it difficult to navigate the application

6) The app provided me with reasonable outfit recommen-
dations

7) 1 preferred the Al prompt over the dropdown menu for
specifying an outfit selection

8) The AI prompt gave me more flexibility than the drop-
down menu for specifying an outfit selection

9) 1 was more satisfied with the outfits provided from the

dropdown than those provided by the Al prompt

If T don’t have any outfits that satisfy my provided

prompt, I would prefer to be shown a random selection

of outfits rather than nothing

I would feel upset if the app could not suggest any outfits

with my own clothing items

10)

11)

Participants were also prompted to respond to the following
freeform questions.

12) What did you like most about the app?

13) What would you like to see added to the app?

14) If the dropdown menu was the primary interface for
generating an outfit, what other options would you like
to see added to choose from?

Would you see yourself using a fully developed version
of the app?

To what degree should your personal style be integrated
into the app’s recommendations?

How comfortable would you feel with the AI making
recommendations based on your personal wardrobe?

18) Would you have any concerns about using this app?

19) Please add any further comments or feedback below

4) Study Results: The pre-study survey elucidated several
key findings regarding the need for the app. Notably, 60% of
the participants reported owning over 80 items of clothing,
with 40% of the participants owning over 100. This indicates
that our target audience owns a significant number of clothing
items, potentially making them difficult to manage. This is
reinforced by the result that 20% of the participants reported
that their collection was ‘Very Large’, which corresponded
to the description that their collection was ‘Extensive, with
many items and hard to manage’. Furthermore, 70% of the
participants reported spending more than 5 minutes selecting
an outfit each day. One participant reported spending between
20-30 minutes each day. Additionally, 20% of the participants
responded that they frequently have trouble picking an outfit,
and it takes them a while to decide. Evidently, these results
reinforce our hypothesis that the current process of selecting
an outfit is time-consuming. Furthermore, 60% of the partic-
ipants reported putting moderate to considerable thought into
selecting an outfit. This exemplifies how this selection process
could be contributing to decision fatigue.

Anecdotal feedback from participants emphasised the stress
and mental effort put into selecting an outfit. For example, P2
stated, “I’'m such an overthinker, I think like the day ahead
[about what I'm going to wear]. Like I was sitting in bed last
night thinking about it.” Furthermore, P2 and P3 noted the
stress that they feel when comparing their outfits to others. P3
said, “You go through your teen angst phase of ‘oh my god, I
have nothing to wear.” Meanwhile, your closet is jam-packed.
But sometimes I’'m just like, especially coming to campus, I
feel really underdressed compared to other people. Yeah, I do
find that [picking an outfit] can get frustrating at times.”

Furthermore, the post-study survey gave key insights into
how participants perceived the usability and utility of the app.
Overall, all participants were able to complete all tasks on the
task list (see Appendix [G-B) within the 15-minute time limit.
The overall responses to the Likert scale questions are shown
in Figure [12]

Participants strongly found the interface to be intuitive, easy
to use and easy to navigate. P7, P9 and P10 specifically
remarked on the app’s ease of use and intuitiveness. P7 stated,
“This is just how I would shop. I think that’s wonderful cause
I have a lot of stuff that I just don’t wear cause it’s just out
of sight. I have used other apps that have a similar capacity in

15)
16)

17)



ENGR 489 (ENGINEERING PROJECT) 2024

the past, but they’ve never been so easy to use ‘cause they get
caught in the minutia. But this is very, very easy to use.” In
particular, P3, P5, P6, P7, P8 and P10 all remarked that they
liked the loading messages when uploading an item to the
app. This indicates a successful user experience that meets
the commercial need of engaging the user early on.

Furthermore, several participants noted the convenience of
the app. Both P3 and P4 noted that they would use the app
in bed before getting up in the morning. Furthermore, PI,
P3, P4, PS5 and P7 remarked that the app would help them
to easily visualise and remember what clothes they owned. P3
stated, “For me personally, I'm like a visual learner, so instead
of getting my clothes out of the wardrobe, I could just do it
on my phone while I'm still in bed.” Furthermore, P1 and P4
remarked that being able to browse and select outfits from their
phone would help them to keep their room tidier. P4 stated,
“For me if things are put away in drawers or closets, I just
forget them. So, this would be a really easy visual reminder.
Rather than pulling everything out of drawers and closets,
laying them on the bed, and seeing if they suit. So I'd love
being able to do it all from my phone to keep my room tidier.”

Furthermore, the majority of participants remarked that the
app provided aesthetically pleasing and prompt-appropriate
outfit recommendations. P2, P5, P6, P8 and P10, in particular,
commented on the wearability and the appropriateness of the
outfits. P2 stated, “[The app] is good at producing outfits that
people would wear.” Upon being shown an outfit selection, P5
remarked, “Ooooh, these [outfits] are so cute!” Additionally,
P2, P3 and P9 remarked that they liked the variety in the outfits
shown, with P3 saying, “For me personally, I don’t have a lot
of clothes, so like finding a variety of outfits is like hard, so
this is really handy.” P2 and P3 also appreciated that they were
shown 3 outfits. However, in contrast, P8 stated, “It makes me
trust the results less when I know that I always get 3 [outfits].”
This highlights the challenges with designing the system, as
while some people appreciate the selection, the selection may
imply to some users that the Al isn’t necessarily making ‘the
best’” selection for them.

However, there were some instances in which the app
recommended items that did not suit the given prompt. For
example, outerwear was paired with an outfit for the beach, or
shoes were provided for an outfit that was intended to be in-
doors. This indicates that the outfit generation algorithm could
use further refinement, especially when matching items based
on temperature and weather. In some cases, the outfit returned
may have been selected as there was no outfit available that
met the specified criteria. In these cases, these outfits should
be prefaced with a message that no exact matches were found.
Responses were mixed as to whether participants would prefer
to be shown a random outfit selection rather than nothing.

While most participants indicated that they preferred the
Al prompt interface and found it more flexible, the results
also indicate that participants preferred the outfits provided by
the dropdown interface. However, P1 and P3 also specifically
remarked that they would use both interfaces but for different
purposes. P3 stated, “I like both [the Al prompt and the drop-
down]. I think the dropdown is really handy cause it breaks
down your day into like categories. But the prompt is like,

[more creative and freeform]. [...] I really like both of them.”
The AI prompt interface can capture more abstract prompts,
such as specific events, moods, or aesthetics. However, the
dropdown appeared to be more efficient to use for simple
prompts such as colours, weather or temperature. P2 noted
a clear preference for the dropdown, saying, “If I was trying
to use this to find an outfit, I would immediately go to the
dropdown.” As such, this indicates that both interfaces should
be available within the app rather than selecting one or the
other. However, the Al prompt should remain the primary
interface.

Participants also identified several key features that they’d
like to see in a fully developed app. A key theme throughout
the feedback was introducing the ability to tailor the recom-
mendations to the users’ preferences. For example, P2 and
P8 mentioned that they’d like for the AI to learn from the
outfits that they favourite. Furthermore, P2 stated, “I wish
there was a way to be like ‘no’ to get the Al to be better”
in reference to the outfits displayed on the AI prompt. P1,
P2 and P5 mentioned that they’d like to be able to set their
preferences regarding aesthetic or outfit rules to help inform
the outfits generated. For example, P2 mentioned that they
would wear dresses or skirts with pants — a combination that
is not supported. Another consistent theme that came up was
being able to specify the number of colours that participants
would like in an outfit. P4 stated that while they would
normally have 3-4 colours in an outfit, they know friends who
would ordinarily wear at least 10.

Furthermore, participants stated that they’d like the ability
to edit the items’ metadata and add more than one metadata
tag to an item. While participants appreciated that the Al
could automatically extract the metadata, some mentioned that
they’d like to be able to edit the information to fit their own
perceptions. For example, P2 stated regarding the generated
metadata, “[The AI] has said that this is yellow, but I'd call it
bright green.” Colour perception is particularly user-specific,
so adding an ability to edit items would help ensure that their
closet is tailored to their preferences.

Additionally, P1, P2 and P6 mentioned that they’d like to
be able to organise and categorise their favourites into folders
so that they could easily find outfits, especially as they added
more favourites.

VI. CONCLUSIONS AND FUTURE WORK

This project successfully achieves its aim of creating a
proof-of-concept prototype app that integrates Al to accelerate
and optimise the outfit selection process. The app successfully
implements the key functionality requirements that allow the
user to upload items, view their items, generate outfits, and
create favourites. The user study validated and reinforced the
need for and desire for this product. Furthermore, this evalua-
tion demonstrated that the app met the usability performance
requirements and met participants’ expectations for the utility
and performance of the app.

However, A key area of future work is improved outfit
customisation, particularly tailoring recommendations to suit
users’ specific preferences. Wearing outfits that align with an



ENGR 489 (ENGINEERING PROJECT) 2024

Likert Ratings Based on Post-Study Survey Questions
5 © ©
45
X
4
= [ EL
35 X
] :
X
25
2 ° °
15
X
Q8 Q9 Q10 Q11

Q1 Q2 Q3 Q4 Q5 Q6 Q7

[

Likert Rating
©

Question Number

Fig. 12: Box and whisker distributions of Ratings given in
response to post-study survey

individual’s personal style is key for harnessing their mood-
enhancing benefits. Furthermore, participants indicated in Q16
of the post-study survey that personal style should factor
heavily into the app’s recommendations and would be a major
factor in why they would use the app. Improving the app’s
outfit-generation algorithm by integrating a more sophisticated
Al would be key for a subsequent version of the product.
The AI could learn users’ preferences based on the outfits
they favourite to inform their recommendation. Furthermore,
additional feedback interfaces could be introduced so that
users can also provide negative feedback if they dislike a
generated outfit. Users could set personal style preferences,
aesthetic goals, or even daily moods to serve as indicators
that could inform the outfits generated.

Furthermore, automatic integrations could further help re-
duce the user’s mental load. For example, calendar and weather
integrations could help to inform the prompts provided based
on the current weather, temperature and planned events for the
day.

ACKNOWLEDGMENTS

My sincere thanks to Dr Stuart Marshall and Dr Andrew
Lensen for supervising this project. Their support, guidance
and quick wit were crucial throughout. Thank you to the
user study participants for their valuable time and opinions.
Additionally, thank you to the ENGR489 cohort for their
support, feedback and caffeine supply.

REFERENCES

[11 M. L. Slepian, S. N. Ferber, J. M. Gold, and A. M. Rutchick,
“The cognitive consequences of formal clothing,” Social Psychological
and Personality Science, vol. 6, no. 6, pp. 661-668, 2015. [Online].
Available: https://doi.org/10.1177/1948550615579462

[2] R. Smith and J. Yates, “Flourishing fashion: An interpretive phenomeno-
logical analysis of the experience of wearing a happy outfit,” Fashion
Studies, vol. 1, no. 1, pp. 1-39, 2018.

[3] H. Adam and A. D. Galinsky, “Enclothed cognition,” Journal of
Experimental Social Psychology, vol. 48, no. 4, pp. 918-925, 2012.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
S0022103112000200

[4] D. Kodzoman, “The psychology of clothing: Meaning of colors, body
image and gender expression in fashion,” Textile & Leather Review,
vol. 2, no. 2, p. 90-103, Jun 2019.

[5]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

E. Euse, “Men will spend four months of their lives deciding what to
wear,” Complex. [Online]. Available: https://www.complex.com/style/a/
erica-euse/men-spend-four-months-of-lives-deciding- what- to-wear
Stitch Fix, “2024 style forecast,” Dec 2023. [Online]. Available:
https://newsroom.stitchfix.com/2024-style-forecast.pdf

S.  Berg, “What doctors wish patients knew  about
decision fatigue,” American Medical Association, Nov
2021. [Online]. Available: https://www.ama-assn.org/delivering-care/
public-health/what-doctors- wish-patients-knew-about-decision-fatigue
K. Vohs, R. Baumeister, B. Schmeichel, J. Twenge, N. Nelson, and
D. Tice, “Making choices impairs subsequent self-control: A limited-
resource account of decision making, self-regulation, and active initia-
tive,” Journal of personality and social psychology, vol. 94, pp. 883-98,
05 2008.

Z. Gervis, “You’re not the only one who constantly feels “wardrobe
panic”,” Mar 2018. [Online]. Available: https://nypost.com/2018/03/07/
youre-not-the-only-one-who-constantly- feels- wardrobe- panic/

¢

European  Parliament, “The impact of textile production
and waste on the environment (infographics),”
2020, accessed: 2024-10-03. [Online]. Available:

https://www.europarl.europa.eu/topics/en/article/20201208STO93327/
the-impact-of-textile- production-and- waste-on- the-environment- infographics
L. Coscieme, L. Akenji, E. Latva-Hakuni, K. Vladimirova, K. Niiniméki,
C. E. Henninger, C. Joyner-Martinez, K. Nielsen, S. Iran, and E. D “Itria,
Unfit, Unfair, Unfashionable: Resizing Fashion for a Fair Consumption
Space., 11 2022.

United Nations, “The 17 goals,” United Nations, 2015. [Online].
Available: https://sdgs.un.org/goals

L. Ceci, “Age group distribution of mobile app users worldwide
in the Google Play Store in 2nd quarter 2022, by category,” Aug
2023. [Online]. Available: https://www.statista.com/statistics/1333429/
google-play-store-apps-age-distribution-by-category/

R. Inostroza, C. Rusu, S. Roncagliolo, V. Rusu, and C. A. Collazos,
“Developing smash: A set of smartphone’s usability heuristics,”
Computer Standards & Interfaces, vol. 43, pp. 40-52, 2016.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
S0920548915000926

Amazon Web Services, “What are foundation models?”” 2024. [Online].
Available: https://aws.amazon.com/what-is/foundation-models/

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(4th Edition). Pearson, 2020. [Online]. Available: http://aima.cs.
berkeley.edu/

G. Prato, F. Sallemi, P. Cremonesi, M. Scriminaci, S. Gudmundsson,
and S. Palumbo, “Outfit completion and clothes recommendation,”
in Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, ser. CHI EA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1-7. [Online].
Available: https://doi.org/10.1145/3334480.3383076

R. Sarkar, N. Bodla, M. 1. Vasileva, Y.-L. Lin, A. Beniwal, A. Lu,
and G. Medioni, “OutfitTransformer: Learning outfit representations for
fashion recommendation,” in 2023 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2023, pp. 3590-3598.

Y. Lin, M. Moosaei, and H. Yang, “OutfitNet: Fashion outfit
recommendation with attention-based multiple instance learning,” in
Proceedings of The Web Conference 2020, ser. WWW °20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 77-87.
[Online]. Available: https://doi.org/10.1145/3366423.3380096

Y. Xu, W. Wang, F. Feng, Y. Ma, J. Zhang, and X. He, “Diffusion
models for generative outfit recommendation,” in Proceedings of
the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR °24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 1350-1359.
[Online]. Available: https://doi.org/10.1145/3626772.3657719

ASOS, “ASOS,” 2024. [Online]. Available: https://www.asos.com/
women/

H. Ko, “Acloset,” 2024. [Online]. Available: https://acloset.app/

Apple Inc., “Designing for ios - human interface guide-
lines,” 2024. [Online]. Available: https://developer.apple.com/design/
human-interface- guidelines/designing-for-ios

A. Pockros, “How gen-z purple became the new millennial pink,” https:
/Iwww.wix.com/studio/blog/lilac-purple, 2022, accessed: 2024-10-03.
A. Chow, “AiDLab fAshlon Data: A100 Dataset,”
2024. [Online]. Available: https://github.com/AemikaChow/
AiDLab-fAshlon-Data/blob/main/Datasets/A100.md


https://doi.org/10.1177/1948550615579462
https://www.sciencedirect.com/science/article/pii/S0022103112000200
https://www.sciencedirect.com/science/article/pii/S0022103112000200
https://www.complex.com/style/a/erica-euse/men-spend-four-months-of-lives-deciding-what-to-wear
https://www.complex.com/style/a/erica-euse/men-spend-four-months-of-lives-deciding-what-to-wear
https://newsroom.stitchfix.com/2024-style-forecast.pdf
https://www.ama-assn.org/delivering-care/public-health/what-doctors-wish-patients-knew-about-decision-fatigue
https://www.ama-assn.org/delivering-care/public-health/what-doctors-wish-patients-knew-about-decision-fatigue
https://nypost.com/2018/03/07/youre-not-the-only-one-who-constantly-feels-wardrobe-panic/
https://nypost.com/2018/03/07/youre-not-the-only-one-who-constantly-feels-wardrobe-panic/
https://www.europarl.europa.eu/topics/en/article/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics
https://www.europarl.europa.eu/topics/en/article/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics
https://sdgs.un.org/goals
https://www.statista.com/statistics/1333429/google-play-store-apps-age-distribution-by-category/
https://www.statista.com/statistics/1333429/google-play-store-apps-age-distribution-by-category/
https://www.sciencedirect.com/science/article/pii/S0920548915000926
https://www.sciencedirect.com/science/article/pii/S0920548915000926
https://aws.amazon.com/what-is/foundation-models/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
https://doi.org/10.1145/3334480.3383076
https://doi.org/10.1145/3366423.3380096
https://doi.org/10.1145/3626772.3657719
https://www.asos.com/women/
https://www.asos.com/women/
https://acloset.app/
https://developer.apple.com/design/human-interface-guidelines/designing-for-ios
https://developer.apple.com/design/human-interface-guidelines/designing-for-ios
https://www.wix.com/studio/blog/lilac-purple
https://www.wix.com/studio/blog/lilac-purple
https://github.com/AemikaChow/AiDLab-fAshIon-Data/blob/main/Datasets/A100.md
https://github.com/AemikaChow/AiDLab-fAshIon-Data/blob/main/Datasets/A100.md

	Introduction
	Environmental and Sustainability Considerations
	Requirements
	Functional Requirements
	Non-Functional Requirements


	Literature Review
	Background
	Decision Fatigue
	Artificial Intelligence (AI)
	Foundation Models
	Search

	Related Work
	Fashion Recommendation Systems
	Fashion Applications

	Summary of Existing Work
	Tools and Methodology
	ChatGPT
	XCode and TestFlight
	Methodology


	Design
	User Interface
	Database
	Backend and AI

	Implementation
	User Interface
	Database
	Backend and AI
	Testing

	Evaluation
	AI Evaluation
	User Evaluation
	Participants
	Testing Conditions
	Process
	Study Results


	Conclusions and Future Work
	References
	Appendix A: GitLab
	Appendix B: Metadata
	Appendix C: Personas
	Primary Persona – The Time-Pressed Fashionista
	Scenario 1: Upload Images of Clothing Items
	Scenario 2: Select Filters for Clothes Shown
	Scenario 3: Filter the Potential Clothes Used For Outfits
	Scenario 4: Select an Outfit For The Day
	Scenario 5: Save a Selected Outfit

	Secondary Persona – The Conscious Shopper 
	Scenario 1: Upload Images of Clothing Items


	Appendix D: Style Match Demonstration
	Appendix E: Gemini Experimentation
	Appendix F: Wireframes
	Appendix G: User Study
	Pre-Study Survey
	Task List
	Post-Study Survey

	Appendix H: Study Results
	Pre-Study Survey
	Post-Study Survey


