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Abstract. One of the most difficult problems in clustering, the task of
grouping similar instances in a dataset, is automatically determining the
number of clusters that should be created. When a dataset has a large
number of attributes (features), this task becomes even more difficult due
to the relationship between the number of features and the number of
clusters produced. One method of addressing this is feature selection, the
process of selecting a subset of features to be used. Evolutionary com-
putation techniques have been used very effectively for solving clustering
problems, but have seen little use for simultaneously performing the three
tasks of clustering, feature selection, and determining the number of clus-
ters. Furthermore, only a small number of existing methods exist, but they
have a number of limitations that affect their performance and scalability.
In this work, we introduce a number of novel techniques for improving the
performance of these three tasks using particle swarm optimisation and
statistical techniques. We conduct a series of experiments across a range
of datasets with clustering problems of varying difficulty. The results show
our proposed methods achieve significantly better clustering performance
than existing methods, while only using a small number of features and
automatically determining the number of clusters more accurately.
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1 Introduction

One of the fundamental challenges in clustering (the task of grouping similar
items/instances of a dataset together) is determining the number of clusters (K)
to be produced. Many traditional methods such as k-means require K to be pre-
defined by the user. Requiring a pre-defined K makes an algorithm less useful,
as domain knowledge of a dataset is required to choose an appropriate K. Often,
when clustering is used as an exploratory method in the knowledge discovery
process, there may be no domain experts available, or there may be no specific
goal in mind (so no sensible K can be determined). Hence, there is a need for
clustering algorithms that are able to automatically find a suitable K.



Datasets have become increasingly larger in terms of the number of features
(m) they contain. Many existing methods such as k-means perform poorly on large
feature sets due to the curse of dimensionality. One common technique to reduce
dimensionality is feature selection, the process of selecting a subset of features to be
used in the data mining process. Performing feature selection removes irrelevant,
redundant, and misleading features [1] while reducing the search space size.

Evolutionary Computation (EC) methods are stochastic population-based tech-
niques inspired by natural evolution which produce solutions to difficult problems.
EC has been extensively applied to clustering [2] and feature selection [1], but
has been rarely used for performing clustering and feature selection simultane-
ously [3–5]. All of the work in this area uses a single-stage approach where K is
either pre-defined [4], or is found during the EC search process [3, 5]. When K is
found automatically by the EC method, the search algorithm must optimise three
criteria: the number of clusters, the clustering performance, and the number of
features used. Such an approach has two significant issues.

The first issue is that a very large search space must be searched on large
datasets with many features and instances. If we consider that K is allowed to
vary between 2 (a single cluster is not allowed) and Kmax (often defined as

√
n for

n instances [6]), each value of K is likely to have different optimal feature subsets
and different clustering solutions. Even with the powerful population-based search
techniques in EC, exploring such a search space thoroughly is difficult.
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(a) 3 features: f10, f6, f12.
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Fig. 1: Wine dataset projected across varying numbers of features.

There is also an inherent dependency between the number of features selected
(m′) and K. A larger m′ will encourage a larger K and vice versa; the more in-
formation (i.e. features) available, the more easily the data can be divided into a
larger number of smaller clusters instead of a few big clusters [7]. For example,
consider the three plots shown in Fig. 1, which show the Wine dataset (containing
three classes, 13 features, and 178 instances) projected using different numbers of
features. The three colours represent the three classes of the Wine dataset. When
three features are used in Fig. 1a, it is easy to distinguish all three classes as dis-
tinct clusters. When one feature is removed in Fig. 1b, the blue class still appears
as a homogeneous cluster, however, the red and green classes are much closer and
have enough overlap so that they may be considered as a single cluster. When only



a single feature is considered in Fig. 1c, all three classes overlap considerably and
it is difficult to choose two thresholds that would split the three classes into three
clusters well. As m′ is minimised to encourage selecting few features, the evolu-
tionary search will be biased towards picking smaller K, reducing performance on
datasets which have large K.

1.1 Goals

In this work, we propose a multi-stage algorithm which extends an existing single-
stage approach [5] in order to automatically find K more accurately, improve
clustering performance, and decrease the number of selected features. We will:

– Propose a new two-stage approach where an estimate of K (called Kest) is
computed in the first stage, and then PSO is used to perform clustering,
feature selection, and refine Kest in the second stage.

– Propose a third stage for fine-tuning the clusters produced in the second stage
using a pseudo-local PSO search technique.

– Enhance the existing fitness function [5] to improve feature selection perfor-
mance and to penalise solutions with K values far away from Kest.

– Evaluate our new approach compared to the existing single-stage approach,
and to k-means, across a variety of datasets.

2 Background

2.1 Clustering

Clustering is perhaps the most researched of all unsupervised learning tasks [8]
with many approaches proposed which are effective on a range of different datasets
with different properties and clustering objectives. The most common category of
clustering algorithms is partitional clustering algorithms, which divide the dataset
into a number of clusters such that each instance lies in exactly one cluster.
Clusters which are tightly packed and are far away from other clusters are gener-
ally regarded to be of high-quality; although other metrics such as connectedness
and density have also been used to indicate cluster quality. k-means is the most
well-known of the partitional clustering algorithms; it produces compact clusters
by repetitively assigning instances to the closest cluster prototype and then re-
computing cluster centres to minimise the intra-cluster variance. Other categories
of clustering algorithms include density (e.g. DBSCAN), graph-based, and hier-
archical (e.g. complete-linkage) algorithms [8].

2.2 Estimating K

A wide range of statistical techniques for estimating the number of clusters (Kest)
in a given dataset have been proposed [9]. While studies have compared the efficacy
of many techniques [9], there is no consensus on the best technique for the general



case. One of the most popular methods is the silhouette criterion, which measures
how well a given instance is matched to its cluster. It is defined as follows:

Silhouette(i) =
b(i)− a(i)

max{a(i), b(i)}
(1)

where a(i) is the average distance between instance i and all other instances in its
cluster; b(i) is the minimum average distance between instance i and the instances
in each other cluster. A silhouette value of 1 indicates an instance is perfectly
clustered; a value of −1 indicates it should be in a neighbouring cluster; a value
of 0 indicates it is on the border of two clusters. The average silhouette computed
across all instances in a partition gives a measure of how good the partition is,
and implicitly balances both the intra- and inter-cluster metrics.

The silhouette criterion can be used to give Kest by performing clustering for
each potential K and then choosing the K for which the average silhouette is
highest. This can be computationally expensive due to the need to compute the
pair-wise distance between all instances in a dataset. However, this computation
only needs to be performed once at the start of the algorithm.

2.3 Feature Selection

EC techniques have been used widely for feature selection [1], with PSO and Ge-
netic Algorithms (GAs) being used for filter, wrapper, and hybrid approaches.
Genetic Programming (GP) has also been used for performing embedded feature
selection [10]. Wrapper methods are ones which uses a learning algorithm to eval-
uate the quality of a feature subset and choose the one that gives the highest
performance on the learning algorithm. Filter methods take a different approach
where the quality of a feature subset is measured more explicitly using a metric
such as information gain or entropy [11]. Filter methods tend to give inferior re-
sults to wrapper methods, but are usually quicker in terms of computational time
required [12]. Hybrid approaches combine both filter and wrapper methods to give
better performance than filter methods while being quicker to run than wrapper
methods. Embedded approaches perform feature selection as part of the learning
algorithm being used, and so can be designed efficiently while being tailored to the
algorithm being used; however, they tend to be more problem-specific. While EC
has been used extensively for feature selection in classification tasks, little work
has used it for clustering, despite clustering generally being regarded as a more
difficult task with a larger search space.

2.4 Related Work

NMA CFS [3] was the first EC method which could simultaneously perform clus-
tering and feature selection while automatically determining K. The authors pro-
posed a single-stage approach using a GA which had a variable length representa-
tion based on the number of clusters in a given solution. While this method was
shown to give good results, it was only tested on datasets with relatively low K
(up to K = 7) and small number of features (up to m = 30). The variable-length



centroid representation is unlikely to scale well as K becomes larger due to the
reasons discussed in [5] which are not repeated here due to space constraints.

Lensen et al. [5] compared a number of medoid- and centroid-based representa-
tions for simultaneous clustering and feature selection. It was shown that a medoid
representation generally had the best performance over a range of datasets when
K was pre-fixed, and also allowed for K to be automatically found by the EC
algorithm while maintaining a fixed-length representation (the Dynamic Medoid
method, i.e. D-PSO). While the D-PSO method showed promise, it was concluded
that it struggled to accurately find K on difficult synthetic datasets which con-
tained a large number of clusters.

Another PSO-based method [4] has also been proposed for simultaneously
performing clustering and feature selection when K is pre-fixed. Although the
authors used a more advanced fitness function than that of NMA CFS to improve
clustering performance, their reliance on K being known means their approach
is not generally comparable to methods which automatically determine K as the
latter is a much more difficult problem.

3 The Proposed Method

Our proposed method consists of multiple stages. In the first stage, an estimate
of K, called Kest, is determined using a statistical measure. The second stage
then performs simultaneous clustering and feature selection, while using Kest as a
guide for finding K. K is still dynamic and so can be optimised by the evolutionary
search, but individuals which have a K that varies too far from Kest will have their
fitness punished correspondingly. As methods used to generate Kest in the first
stage may not give perfect estimates, allowing minor variations to Kest allows the
EC method to fine-tune the K value. The (optional) third stage then performs
a pseudo-local search using a centroid representation to fine-tune the solution
produced by the second stage.

The following subsections discuss the design of each of the stages in detail.

3.1 First Stage

The Silhouette method described in Section 2.2 was used in this study to produce
Kest in the first stage as it was empirically found to be the most accurate method
tested. k-means was used to cluster the data in the first stage for each potential k
in the range [2,

√
n], as suggested in [6], and then the average silhouette for each

K was computed. The K with the highest average silhouette is chosen as Kest.
The silhouette method is non-deterministic and produces a large variation in Kest

values across different runs. To address this we run the algorithm 30 times and
take the median Kest to reduce variation, producing more consistent Kest values.

3.2 Second Stage

PSO Representation: The output of the first stage is a single Kest value. The
second stage uses this value as a heuristic to guide the search by PSO for the num-
ber of clusters. We use the medoid (an instance that acts as a cluster prototype)



representation introduced in [5], which allows for simultaneous clustering, feature
selection and selection of K automatically within a single particle, as shown in Fig.
2. Using such a medoid representation has been shown to give good clustering and
feature selection performance, while allowing a fixed-length representation even
when K is allowed to vary [5].

ΘFmF1 ... I1 ... In

Fig. 2: Medoid representation for simultaneous clustering and feature selection.

The first m dimensions represent whether each of the m features in the dataset
is selected. The last n dimensions represent whether each of the n instances is cho-
sen as a medoid. A feature is considered to be selected if its corresponding position
value is non-negative. An instance is considered to be a medoid if its position value
is greater than Θ, a threshold that is directly encoded (and automatically evolved)
in the particle representation. All positions take floating-point values.

Fitness Function: Another novel component of this work is the fitness function
to use to evaluate the goodness of solutions produced during the PSO search
process. As previously discussed, there are three key criteria required to measure
the quality of a given PSO solution: the clustering performance, the number of
features used, and how far K deviates from the heuristic Kest. As such, we propose
that a suitable fitness function should take the following form:

Overall Fitness = Cluster Performance× Feature Weighting×K Weighting (2)

We discuss the design of each of the three components below:

(1) Measuring cluster performance: The clustering performance can be measured
using many metrics, most of which attempt to minimise the intra-cluster variation
while maximising the inter-cluster separation. We use the same metric as in [5],
which was shown to give good clustering results. This metric is defined below:

Cluster Performance =
Betweensum

Withinsum
(3)

Withinsum =
1

n

K∑
i=1

∑
Ia∈Ci

d(Ia, Zi)
2 (4)

Betweensum =

K∑
i=1

|Ci|
n

d(Zi, Z
∗)2 (5)

where Ci and Zi represent the ith cluster and the mean of the ith cluster respec-
tively. The dataset mean (Z∗) is the mean across all instances in the dataset.
d(Ia, Ib) is the Euclidean distance between two instances Ia and Ib:

d(Ia, Ib) =
√

(Ia1 − Ib1)2 + (Ia2 − Ib2)2 + ... + (Iam − Ibm)2 (6)
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Fig. 3: Fitness weightings for balancing the number of features and clusters.

where ai and bi give the ith feature value of instances a and b. The distance
function considers all features, even those that have not been selected by the
algorithm. This is done to prevent feature selection introducing a bias towards a
low number of clusters (as discussed previously).

(2) Measuring feature selection performance: The most common metric for mea-
suring the goodness of a feature subset is to apply a weighting based on the
number of features selected. This is usually expressed as a simple fraction in the
form m−m′

m for m total features and m′ selected features. Such a weighting applies
a linear penalty to the fitness of a given particle with respect to the percentage
of features selected. An issue found with this approach is that the search process
will tend to over-emphasise minimising m′ at the cost of cluster performance —
it is usually “easier” to improve fitness by reducing m′ than by improving cluster
performance. Furthermore, the goal of feature selection is generally to reduce the
number of features used to an acceptable level; the user may not differentiate be-
tween 5% or 10% features being selected as both values of m′ are acceptably small.
Hence, a linear weighting mechanism may not be ideal; ideally we would like to
apply little penalty when m′ is below a threshold and then apply an increasing
amount of penalty as m′ increases. To achieve this we propose using an elliptical
function as shown in Fig. 3a.

The equation used to determine the feature weighting is as follows:

Feature weighting =
1

m

√
m2 − (m′)2 (7)

We trial using both this method and the normal linear method for the feature
weighting component of the fitness function in our experiments.

(3) Restricting the search space of K: The final decision required is how to penalise
particles which have a K value varying significantly from the Kest heuristic. As
Kest is not a perfect estimate, we allow small variations from it without any
significant penalty. As the variations increase, we should penalise at a higher rate.
The use of a Gaussian function was found to give a good balance of these two



objectives. Fig. 3b shows an example of a Gaussian function with µ = Kest and
σ = Kest

1.5 where the output is scaled to give 1 (no penalty) when K = Kest. As
shown, the fitness weighting is small for K values between 8 and 12 or so, but
becomes large when K is 5 or 15. The standard deviation must be a function of
Kest to ensure the function scales effectively; the denominator of 1.5 was chosen
empirically. The use of different denominators (e.g. 1 or 2) will increase/decrease
the rate of penalty as K varies from Kest. We use this Gaussian function as the
third component of the fitness function in the second stage.

3.3 Third Stage (pseudo-local search)

One key limitation of a medoid-based representation is that cluster prototypes
are restricted to the instances in the dataset. It is possible that better clusters
may be formed using cluster prototypes that lie elsewhere in the feature space (e.g.
halfway between two instances). To address this limitation, while still maintaining
the benefits of a medoid approach, we propose the use of a third-stage where
the medoid representation is converted to a centroid representation and then the
centroids are fine-tuned using another PSO search process. We call this procedure
a “pseudo-local search”, as particles are initialised to the best solution found in
the second stage, but are allowed to explore the search space freely.

C1m'C11
... CK1 CKm'

... ...

Fig. 4: Centroid representation used in the third stage.

Fig. 4 shows the representation used in the third stage. Each of the K medoids
in the best solution from the second stage are used to initialise the position of the
particles in the third stage — each medoid is converted to a centroid with length
equal to the number of selected features (m′ ) where the centroid contains the
feature values for each of the selected features. Each particle’s velocity is randomly
initialised. Hence, particles will initially spread out in different directions from the
second stage’s gbest before beginning to converge again. It is hoped this will allow
fine-tuning of the cluster centres, while focusing the majority of the search in an
area which is known to give good performance.

4 Experiment Design

To evaluate the performance of the proposed approach, a number of methods were
tested across a range of real-world and synthetic datasets. The methods are:

1. 2-Stage Linear PSO: proposed method using linear feature weighting.

2. 2-Stage Elliptical PSO: proposed method using elliptical feature weighting.

3. 3-Stage PSO: the 2-Stage Elliptical PSO method plus the third stage (pseudo-
local search) for refining the solutions.



4. kest-means: the standard k-means algorithm but using K = Kest as computed
by the first stage of the proposed approach. This algorithm is used to evaluate
how well the proposed approach is able to refine K based on the heuristic and
how well it can perform feature selection.

5. k-means: the standard k-means algorithm, initialised with centroids drawing
from instances in the dataset. Note that K is known, and so this algorithm
is being run on a much easier task.

6. D-PSO Scaled: The single-stage medoid approach proposed previously [5].

All methods are non-deterministic and so were run 30 times on each dataset for
500 iterations to ensure search convergence. The PSO methods had a swarm size of
100 and used standard PSO parameters [13]: w = 0.729844, C1 = C2 = 1.49618,
and velocity clamped between −6 and 6. A fully connected PSO topology was
used; gbest after 500 iterations gives the best solution. Feature values were scaled
linearly to fall between 0 and 1 based on their minimum and maximum values.

4.1 Evaluation Metrics

We evaluate our proposed methods using two internal metrics (which measure
clustering quality based on properties of the clusters produced), and two external
metrics (which compare the clusters produced to the known class labels). The
internal metrics are the scatter metric, which considers both the within-cluster
scatter (Sw, i.e. compactness) and between-cluster variation (Sb, i.e. separability),
and the

∑
Intra metric, which measures the total distance from all instances to

their cluster means (i.e. net compactness). The external metrics are class purity,
which measures the homogeneity of each cluster using its instance’s class labels,
and the F-measure, which measures how well pairs of instances agree on their class
labels and cluster memberships. Each of these metrics is defined below.

1. Scatter trace criterion:

Scatter = trace(S−1
W SB) (8)

Sw =
1

n

K∑
i=1

∑
Ia∈Ci

(Ia −Zi)(Ia −Zi)
T (9) Sb =

K∑
i=1

|Ci|
n

(Zi − Z∗)(Zi − Z∗)T (10)

where Ci represents the ith cluster and Zi and |Ci| are the mean of the ith

cluster and the number of instances in the ith cluster respectively. Ia is an
instance within cluster Ci. The dataset mean is given by Z∗.

2. Sum intra-cluster distance:∑
Intra =

K∑
i=1

∑
Ia∈Ci

d(Ia, Zi) (11)

3. Class purity: computed according to the following steps:
(a) For each cluster, find the majority class label of the instances in the cluster.
(b) Count the number of correctly classified instances, where an instance is

correctly classified if it belongs to the majority class.
(c) Class purity is the fraction of correctly classified instances in the partition.



4. F-measure: We adapt the F-measure used in classification tasks. We consider
each pair of instances in turn (it is not possible to directly decide if an instance
is in the “right” cluster) and choose which of the following cases apply:
(a) Same class label, belong to the same cluster: true positive (TP ).
(b) Same class label, belong to the different clusters: alse negative (FN).
(c) Different class labels, belong to different clusters: true negative (TN).
(d) Different class labels, belong to the same cluster: false positive (FP ).
The F-measure is then calculated in the normal way using the total number
of TPs, FPs, and FNs, as follows:

F-measure = 2× precision× recall

precision + recall
(12)

precision =
TPs

TPs + FPs
(13) recall =

TPs

TPs + FNs
(14)

4.2 Datasets

To comprehensively evaluate our proposed methods, we selected a variety of real-
world and synthetic datasets which are shown in Table 1. The real-world datasets
are sourced from the UCI machine learning repository [14], which contains several
datasets often used for clustering [3, 5]. These datasets are classification datasets
(i.e. class labels are provided), but as is common in the clustering literature, we
exclude the class labels from the training process and only use them to evalu-
ate the final cluster against the known classes. The synthetic datasets have been
specifically designed for evaluating clustering algorithms, with 10, 20, or 40 clus-
ters and between 1014 and 2893 instances in each dataset. The synthetic datasets
with large K (e.g. K = 40) and many features (e.g. m = 100) are very challenging
for traditional methods such as k-means due to the large search space; it is hoped
that our proposed methods will show clear improvements on these datasets.

Table 1: Datasets used in the experiments.

Real-World UCI datasets from [14]. Synthetic datasets from [15].

Name
No. of

Features

No. of

Instances

No. of

Classes
Name

No. of

Features

No. of

Instances

No. of

Classes

Iris 4 150 3 10d10c 10 2730 10

Wine 13 178 3 10d20c 10 1014 20

Movement
Libras

90 360 15 10d40c 10 1938 40

50d10c 50 2699 10

Breast
Cancer

9 683 2 50d20c 50 1255 20

50d40c 50 2335 40

Image
Segmentation

18 683 7 100d10c 100 2893 10

100d20c 100 1339 20

Dermatology 34 359 6 100d40c 100 2212 40



5 Results and Discussion

The results of the experiments are shown in Tables 2 and 3 for the real-world and
synthetic datasets respectively. Each table shows the mean number of features
selected and clusters produced by each method (note that these are constant for
k-means) as well as the method’s average performance according to a number of
evaluation metrics. The

∑
Intra metric is the only one which should be minimised

— it is labelled with a ∗ to indicate this. For each of the proposed methods, each
result is labelled with a “+” or a “−” if it is significantly better or worse than the
k-means baseline according to a Student’s t-test performed with a 95% confidence
interval. A lack of a “+” or “−” indicates no significant difference was found. A
label of ↑ or ↓ indicates a result is significantly better or worse than the existing
D-PSO Scaled method [5] according to the same test. The results are analysed on
the real-world and synthetic datasets separately in the following subsections, and
then some general trends are discussed.

5.1 Real-world Data

Our proposed methods are competitive with k-means on the external metrics and
often have superior performance on the internal metrics for the first four real-world
datasets, while using a much smaller number of features. The methods also gen-
erally outperform D-PSO on the external metrics on four of the six datasets. The
proposed methods perform significantly worse than k-means and D-PSO across
all metrics on the Image Segmentation dataset due to incorrectly choosing K = 3.
As the value of Kest is 2 on average, PSO is only able to vary K to be 3 without
fitness being overly affected. On the Dermatology dataset, the proposed methods
achieve a significantly better F -measure value compared to k-means and D-PSO,
despite incorrectly estimating K. This is likely due to the estimated K allowing
better-formed clusters; on real-world data, class labels are produced by a human
expert and may not correspond well to hyper-spherical clusters.

Another important consideration is that a clustering partition that differs from
the known classification is not necessarily a “wrong” clustering — there are many
ways to group a dataset based on different characteristics (i.e. feature subsets).
Hence, it may be better to consider the performance in terms of the internal
metrics as a better measurement of how well the proposed approach performs.
If we consider the internal metrics, then it is clear that the proposed approach
is able to achieve similar to or better results than k-means on the Iris, Wine,
Movement Libras, and Breast Cancer datasets, while using a much smaller number
of features. On the other two datasets, the performance is far superior to the kest-
means method, while again using a small number of features.

To analyse why K was being inaccurately estimated on the Image Segmenta-
tion and Dermatology datasets, we visualised these datasets using the principal
component analysis (PCA) and t-distributed stochastic neighbour embedding (T-
SNE) visualisation methods, as shown in Fig. 5 and 6. Each sub-figure shows the
results of applying one of these methods to one of the datasets, where the colours
represent the class labels of the dataset.



Table 2: Real-world datasets

Dataset Method m′ K Scatter
∑

Intra ∗ Purity FM

Iris

2-Stage Linear PSO 1 3 26.78+↓ 29.99↓ 0.9436+↑ 0.8962+↑

2-Stage Elliptical PSO 1 3 27.4+↓ 29.96↓ 0.9493+↑ 0.9055+↑

3-Stage PSO 1 3 26.9+↓ 29.99↓ 0.9449+↑ 0.898+↑

kest-means 4 2 9.8 37.23 0.6667 0.7462
k-means 4 3 16.37 30.58 0.8404 0.7751
D-PSO Scaled 1 3.6 35.03 28.29 0.9191 0.8229

Wine

2-Stage Linear PSO 2.27 3.37 12.53↑ 89.28−↑ 0.9161− 0.8152−↓

2-Stage Elliptical PSO 3.57 3.4 13.96+↑ 88.14+↑ 0.9418↑ 0.8523−

3-Stage PSO 3.67 3.4 14.55+↑ 87.67+↑ 0.9541+↑ 0.8749−↑

kest-means 13 2 4.92 104.2 0.6073 0.6357
k-means 13 3 12.68 88.75 0.9464 0.8947
D-PSO Scaled 2.27 3 11.14 90.26 0.9167 0.8414

Move.
Libras

2-Stage Linear PSO 14.5 17.77 45.62+↑ 388.1+↑ 0.5017+↑ 0.3423↑

2-Stage Elliptical PSO 26.7 17.9 47.14+↑ 383.9+↑ 0.5005+↑ 0.3501↑

3-Stage PSO 26.5 17.73 49.01+↑ 380.0+↑ 0.5012+↑ 0.3596+↑

kest-means 90 12.27 31.28 434.6 0.4226 0.3278
k-means 90 15 39.01 409.4 0.4705 0.347
D-PSO Scaled 12.5 6.13 15.21 515.6 0.2859 0.2518

Breast
Cancer

2-Stage Linear PSO 1.53 2 6.062−↓ 344.2−↓ 0.9407− 0.8994−↑

2-Stage Elliptical PSO 2.5 2 7.547−↓ 335.6− 0.9571−↑ 0.9251−↑

3-Stage PSO 2.43 2 7.807−↓ 334.7− 0.9573−↑ 0.9254−↑

kest-means 9 2 8.2 332.0 0.9609 0.9313
k-means 9 2 8.211 332.0 0.9611 0.9316
D-PSO Scaled 1.6 2.7 10.17 331.0 0.9441 0.8744

Image
Seg.

2-Stage Linear PSO 1.33 3 19.33−↓ 1245.0−↓ 0.4251−↓ 0.4536−↓

2-Stage Elliptical PSO 2.13 3 19.18−↓ 1242.0−↓ 0.4275−↓ 0.4583−↓

3-Stage PSO 1.8 3 19.36−↓ 1241.0−↓ 0.4276−↓ 0.4595−↓

kest-means 18 2 4.063 1482.0 0.2857 0.3362
k-means 18 7 60.86 898.3 0.6426 0.5583
D-PSO Scaled 2.23 5.23 63.53 984.4 0.6089 0.5725

Derm.

2-Stage Linear PSO 4.53 3.97 68.03− 405.5− 0.7837−↑ 0.7886+↑

2-Stage Elliptical PSO 7.13 4 79.26−↑ 401.6−↑ 0.8025↑ 0.8206+↑

3-Stage PSO 7.07 4 81.22−↑ 400.9−↑ 0.8083↑ 0.8311+↑

kest-means 34 2.73 55.69 457.3 0.612 0.6113
k-means 34 6 93.58 387.6 0.8278 0.7351
D-PSO Scaled 4.37 3.8 68.77 409.4 0.7602 0.7587

On the Dermatology dataset (which has 6 classes), PCA clearly separates the
red and green classes into two distinct clusters. The remaining classes appear as
one tightly packed cluster, with the pink class potentially a fourth cluster. This
gives 3–4 clusters on this dataset, consistent with the 4 average clusters found by
the proposed methods. T-SNE more clearly separates the classes into clusters, but
there is still overlap between the teal and yellow classes, giving 5 distinct clusters.

The visualisations on the Image Segmentation dataset are much more unclear;
PCA produce a poor visualisation, with only the purple class being clearly sepa-
rated. T-SNE is clearer — the aquamarine and purple classes are separated well,
but the remaining classes all have a fair amount of overlap. This suggests why the
proposed methods find 3 clusters — two of the classes fit into two clusters well,
and the remaining instances have sufficient overlap to produce a single cluster.

In summary, both the linear and elliptical two-stage methods successfully select
a small m′ on all real-world datasets. The elliptical method has slightly better
performance than the linear method while selecting additional features. If the
minimum number of features is desired while achieving good performance, then
the linear method is best; however, if better performance is preferred at the cost
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Fig. 5: Visualisations of Dermatology dataset.
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Fig. 6: Visualisations of Image Segmentation dataset.

of slightly higher complexity, the elliptical method should be used. The 3-stage
method has slightly higher performance than the 2-stage elliptical method across
all metrics, which shows the pseudo-local search is able to further refine solutions.

5.2 Synthetic Data

Unlike the real-world datasets, the synthetic datasets have classes which map well
to hyper-spherical clusters. Thus the external metrics are useful for measuring the
performance of the proposed approach, which clearly outperforms k-means and
kest-means on all of the synthetic datasets (except 10d10c) while achieving a low
m′, especially on the datasets with high m. The proposed approach scales to large
datasets more effectively than the k-means algorithm, despite not performing only
clustering, but also feature selection and determiningK in the same search process.
It also performs better than k-means on the internal metrics across the 50d and
100d datasets, where it selects the most useful features to improve clustering.

Despite performing well, the proposed methods are inaccurate in predicting
K on several of the synthetic datasets, such as 50d20c and 100d20c where they
select 35 − 36 clusters instead of 20. However, compared to the D-PSO method,
the proposed methods predict K more accurately on 7 of the 9 datasets. The
D-PSO method predicts values of K close to 20 on all the 50d and 100d datasets



Table 3: Synthetic datasets

Dataset Method m′ K Scatter
∑

Intra ∗ Purity FM

10d10c

2-Stage Linear PSO 3.63 8.97 15.04−↑ 782.6−↑ 0.8051−↑ 0.763−

2-Stage Elliptical PSO 4.93 9.57 15.63−↑ 750.0−↑ 0.8604−↑ 0.8196↑

3-Stage PSO 4.9 9.07 16.11−↑ 739.9−↑ 0.8872−↑ 0.8678+↑

kest-means 10 5.43 11.49 815.9 0.7743 0.7786
k-means 10 10 17.7 715.7 0.9175 0.833
D-PSO Scaled 3.3 6.97 12.63 817.7 0.7718 0.7481

10d20c

2-Stage Linear PSO 5.07 20.1 75.32+↑ 226.9+↑ 0.9587+↑ 0.9408+↑

2-Stage Elliptical PSO 6.1 20.17 85.2+↑ 216.8+↑ 0.9828+↑ 0.9721+↑

3-Stage PSO 6.07 20 90.17+↑ 213.3+↑ 0.9953+↑ 0.9928+↑

kest-means 10 15.13 53.31 292.7 0.7907 0.7651
k-means 10 20 70.02 248.5 0.8887 0.8218
D-PSO Scaled 4.4 14.7 51.65 282.7 0.8249 0.8305

10d40c

2-Stage Linear PSO 5.47 39.73 67.26−↑ 452.0−↑ 0.9182↑ 0.8699↑

2-Stage Elliptical PSO 6.87 39.7 78.29+↑ 417.3+↑ 0.9615+↑ 0.9437+↑

3-Stage PSO 6.87 40.1 85.66+↑ 402.9+↑ 0.9824+↑ 0.97+↑

kest-means 10 29.83 55.58 499.9 0.8385 0.8234
k-means 10 40 74.5 433.7 0.9219 0.8657
D-PSO Scaled 3.83 15.6 27.08 756.4 0.5692 0.5477

50d10c

2-Stage Linear PSO 9.3 13.5 93.48+↓ 1072.0+↓ 0.8191+↓ 0.5197+

2-Stage Elliptical PSO 14.87 13.23 96.76+↓ 1071.0+↓ 0.8174+↓ 0.5172+

3-Stage PSO 14.23 13.5 104.5+↓ 1045.0+↓ 0.8152+↓ 0.5125+

kest-means 50 11.53 88.84 1242.0 0.7679 0.4978
k-means 50 10 72.87 1306.0 0.7426 0.4865
D-PSO Scaled 9.07 18.5 144.2 930.6 0.8824 0.5196

50d20c

2-Stage Linear PSO 10.87 34.63 250.2+↑ 372.4+↑ 0.8622+↑ 0.525+↑

2-Stage Elliptical PSO 17.43 34.67 261.8+↑ 366.1+↑ 0.8692+↑ 0.5171+↑

3-Stage PSO 17.33 34.6 283.1+↑ 356.8+↑ 0.858+↑ 0.4835+↑

kest-means 50 28.8 211.3 432.5 0.8057 0.4713
k-means 50 20 137.5 548.6 0.6858 0.3581
D-PSO Scaled 10.63 17.43 99.65 539.6 0.7165 0.4167

50d40c

2-Stage Linear PSO 13.57 48 200.4+↑ 756.9+↑ 0.7724+↑ 0.4888+↑

2-Stage Elliptical PSO 19.87 48 211.7+↑ 738.8+↑ 0.788+↑ 0.4949+↑

3-Stage PSO 20.43 48 230.3+↑ 708.5+↑ 0.761+↑ 0.3669+↑

kest-means 50 44.7 214.5 822.6 0.7099 0.2841
k-means 50 40 192.4 871.9 0.6749 0.2586
D-PSO Scaled 11.33 26.03 104.5 1062.0 0.5546 0.2455

100d10c

2-Stage Linear PSO 20 15.87 148.3+↓ 1401.0+↓ 0.8655+↓ 0.5648+

2-Stage Elliptical PSO 29.4 15.77 150.9+↓ 1395.0+↓ 0.8676+↓ 0.5707+↑

3-Stage PSO 28.9 15.73 153.4+↓ 1376.0+↓ 0.8567+↓ 0.5557+

kest-means 100 11.27 115.2 1807.0 0.794 0.5623
k-means 100 10 103.5 2036.0 0.7436 0.5194
D-PSO Scaled 17.3 18.97 206.1 1287.0 0.9137 0.5549

100d20c

2-Stage Linear PSO 21.9 36 358.9+↑ 559.9+↑ 0.8945+↑ 0.5627+↑

2-Stage Elliptical PSO 33.4 36 381.9+↑ 548.2+↑ 0.8943+↑ 0.5466+↑

3-Stage PSO 34.17 35.93 399.9+↑ 536.1+↑ 0.8858+↑ 0.5256+↑

kest-means 100 26.2 260.4 707.5 0.7865 0.4505
k-means 100 20 188.1 841.0 0.7011 0.3799
D-PSO Scaled 19.53 20.23 162.7 748.6 0.7568 0.4435

100d40c

2-Stage Linear PSO 27.37 47 304.4↑ 991.7+↑ 0.7968+↑ 0.5116+↑

2-Stage Elliptical PSO 39.07 47 315.8+↑ 980.4+↑ 0.8057+↑ 0.5012+↑

3-Stage PSO 37.9 47 338.6+↑ 940.5+↑ 0.7624+↑ 0.3305+↑

kest-means 100 42.87 332.0 1146.0 0.7073 0.2837
k-means 100 40 301.4 1176.0 0.6923 0.2689
D-PSO Scaled 22.47 23 142.7 1442.0 0.5426 0.1997

despite K actually varying from 20 to 40. This suggests that D-PSO cannot search
for the true K value as effectively as the proposed methods. It is interesting to
note that the K values produced by the proposed methods are always higher
than the Kest generated by the first stage.This suggests that the fitness function



encourages a higher number of clusters, perhaps due to the clustering performance
metric used. This behaviour is useful in some cases, where Kest is below the actual
K (e.g. 10d10c, 10d20c and 10d40c), but on the other synthetic datasets where
Kest > Kactual, it means that the proposed methods are not able to correctly lower
the K found. It would be useful to investigate changing the clustering performance
metric in the fitness function to encourage searching values on both sides of Kest.

5.3 Further Analysis

The two variations of the two-stage approach perform better on different datasets:
the elliptical approach is best on datasets with small feature sets (Wine, Breast
Cancer, Dermatology, 10d) where the linear fitness function selects fewer features
at the expense of cluster quality. On the larger feature sets, the elliptical approach
selects extra features without increasing performance. This is due to the ellipse
used: on large feature sets, e.g. the 50 features seen in Fig. 3a, the feature weighting
is close to 1 for m between 0 and 10, and above 0.9 even when 20 features are
selected — indeed, on the synthetic datasets with 50 features, this method selects
15 to 20 features. On smaller feature sets, this effect is less noticeable, as only a few
features are able to be selected before the feature weighting decreases significantly.
Investigating a way of dynamically altering the shape of the ellipse used based
on the size of the feature set would ensure that the weighting “drop-off” begins
earlier on bigger datasets. The two-stage methods have similar values of K across
all datasets, indicating that neither is being overly affected by the correlation
between m′ and K. If this had occurred, the elliptical approach would have higher
K on the datasets where it selected more features than the linear approach.

The three-stage approach is an improvement compared to the two-stage ellip-
tical approach on the internal metrics across all of the datasets (and especially on
the hardest synthetic ones). This suggests that fine-tuning the solutions produced
with a pseudo-local search is effective, increasing cluster quality. However, the re-
sults on the external metrics are much worse for the three-stage approach on the
50d40c and 100d40c synthetic datasets, contrary to that of the internal metrics.
It is not obvious why this occurs — one explanation is that the noise present in
the synthetic datasets has a significant effect when K is large (i.e. K = 40); as
a centroid can take any possible co-ordinates (unlike a medoid), it may be much
more sensitive to the noise in the dataset, producing overly specific clusters.

6 Conclusion

This work introduced a comprehensive and coherent two-/three-stage approach
for performing simultaneous clustering and feature selection while automatically
finding the K required. A number of novel techniques were proposed, including:
using an estimate of K, Kest, to guide the PSO search process; a multi-faceted
fitness function which encourages good cluster quality, minimises m′, and reduces
the search space of K; and a pseudo-local search which refines the clusters pro-
duced by the second stage. We showed that our approach gave good performance
across several difficult datasets compared to existing methods, while selecting as
few features as needed. In particular, our approach was shown to be effective on



datasets with large K, which existing approaches largely fail to address. Our ap-
proach was successful at reducing dimensionality on large feature sets, consistently
selecting under 40% of features on datasets with 100 features and 10 to 40 clusters.

In future work, we will further refine our fitness function by taking a multi-
objective approach in order to allow more intelligent balancing of all three of
cluster performance, feature selection, and deduction of K. We would also like to
investigate other methods of measuring cluster performance (perhaps using multi-
objective techniques), such as connectedness or density. There is also scope for
improving performance further with other methods for estimating K, penalising
the number of features produced, or using other EC techniques or representations.
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