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Abstract  

Leaf area is a critical plant functional trait, widely used for understanding plant responses to climate 

change, ecosystem productivity, and species' adaptive strategies. Inaccurate leaf area 

measurements compromise the accuracy of other traits normalised by area, such as foliar chemical 

traits, respiration, and photosynthesis. However, existing measurement methods are ineffective for 

small-leaved plants and often necessitate manual processing, which limits sample sizes and 

potentially obscures subtle trait-environment relationships. We developed SALMA (Semi-Automated 

Leaf Morphological Analysis), which employs logistic regression trained on one to four human-
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generated examples per species to delineate leaf boundaries for that species accurately. SALMA’s 

training step adapts to species-specific features by integrating multiple characteristics, such as 

colour variations and edge details. The approach is validated on an extensive dataset (64 species, 

3332 images) that covers 91.4% of the worldwide leaf area variation, as well as two smaller datasets 

comprising low-quality photographs of morphologically complex or damaged leaves. SALMA 

consistently achieved leaf area errors 2 to 15 times lower than existing algorithms and a theoretical 

upper bound of any grayscale intensity-based method. Critically, we identify a previously overlooked 

power-law relationship between leaf area and measurement error, demonstrating that existing 

methods may overestimate leaf area by at least 5% for 43% of global species, whereas SALMA 

achieves comparable errors for only 2.1% of species. SALMA is a standalone software with an 

intuitive interface that supports parallel processing, making it accessible for large-scale ecological 

studies globally. It can potentially enhance the quality of trait datasets and facilitate large-scale 

sampling, thereby advancing our understanding of plant-environment interactions. Our published 

dataset contains manually created binary segmentations of leaves and background, providing a 

baseline for future leaf measurement algorithms. 

1. Introduction 

Plant functional traits are central to predicting community assembly and ecosystem function 

(Dubuis et al., 2013; Funk et al., 2017; Lavorel & Garnier, 2002); among them, leaf area metrics 

consistently emerge as important traits. Of particular importance is specific leaf area (SLA, i.e. leaf 

area divided by weight) as the most studied leaf trait relevant to predicting responses to climate 

change  (Green et al., 2022; Kühn et al., 2021). SLA describes how a plant invests resources for 

growth and survival, making it a key trait in balancing resource use, longevity and resilience (Díaz et 
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al., 2016; Wright et al., 2004).  As a measure of carbon investment per unit of light capture, SLA is 

linked to key ecological processes, including demographic rates  (Swenson et al., 2020; Wright et al., 

2004), above-ground productivity (Violle et al., 2007) and leaf life span (Osnas et al., 2013). Leaf area 

is preferable to mass for normalising nitrogen, phosphorus, dark respiration, and photosynthesis 

rates measurements because these traits are linked to a leaf’s ability to capture light and CO₂ , while 

mass-based normalisation distorts these relationships due to differences in leaf structure (Osnas et 

al., 2013). Errors occurring in leaf area measurements therefore compromise the values of many 

important traits, biasing and limiting our ability to uncover trait–environment relationships and 

ecological trade-offs. 

 

Precise measurements are particularly challenging for small-leaved species typical of alpine, 

heathland, and arid ecosystems, where strong abiotic filtering favours plants with small, thick leaves 

adapted to high radiation, low temperatures, and drought  (Parkhurst & Loucks, 1972). These 

species are highly sensitive to climatic changes and often serve as important indicators of 

environmental responses (Fagúndez, 2013; Grabherr et al., 2010; Prager et al., 2022). Their 

prevalence across resource-poor environments makes small leaves a key functional adaptation 

within the global leaf-economics spectrum (Wright et al., 2004). However, global databases (e.g. TRY 

(Kattge et al., 2020)) are biased towards plants with higher SLA (and thus larger leaf area) (Sandel et 

al., 2015), likely due to the size and morphological complexity of small-leaved plants. This leads to a 

bias in our understanding of global trait distributions and trade-offs towards larger-leaved 

temperate and tropical species. Accurate leaf area data for small-leaved plants are therefore crucial 

to better represent resource-poor ecosystems and promote understanding of global trait–

environment relationships. 
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Figure 1: Leaf area detection and some of its problems. A: Typically, the process involves converting an 

image to a grayscale and thresholding at a specific (often automatically determined) value to separate the 

background from the leaf. The resulting outline or segmentation can then be automatically measured. B: 

The most common error is the inclusion of shadows in the foreground, which leads to an overestimation 

of leaf area, especially for smaller leaves (left). When dealing with many fragments, this method 

necessitates laborious manual screening for unwanted particles resulting from shadows or dust if they 

can’t be automatically distinguished by size (right). 

 

Most commonly, leaf area is measured by capturing digital images on a flatbed scanner or camera, 

converting them to a grey-scale intensity image and then setting a threshold value that separates 

the background from leaf pixels, resulting in a binary segmentation image or mask (Pérez-

Harguindeguy et al., 2013) (Fig. 1A). Small leaves, in particular, pose a challenge as they produce 
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large shadows relative to the leaf area (Fig. 1 B left) that are visually similar to the leaf and are 

indistinguishable in shape from plant matter after thresholding (Fig. 1 B right). This process can be 

done manually using image processing software (e.g. ImageJ (Schneider et al., 2012)) or through 

automated software such as LeafByte (Getman-Pickering et al., 2020), LeafArea R Package 

(Katabuchi, 2015), USPLeaf (Meira et al., 2020)  or FAMeLeS, an ImageJ macro, (Montès et al., 2024) 

(See supplementary materials in (Montès et al., 2024) for a comprehensive list of methods). 

However, most algorithms use simple automated thresholding methods like “Otsu’s threshold” 

(Otsu, 1979) (USPLeaf and LeafByte) or “Minimal threshold” (Prewitt & Mendelsohn, 1966) (LeafArea), 

or set some fixed threshold after preprocessing (FAMeLeS), making them functionally very similar to 

one another and neglecting the diversity of shape and colour among species of the global flora. 

Exceptions include Leaf-IT (Schrader et al., 2017), which traces one continuous line around leaves 

using image gradients and logical rules, as well as Easy Leaf Area (Easlon & Bloom, 2014), which sets 

thresholds on the ratio of red/green channels. Rigorous tests and precision comparisons across 

methods are largely absent (e.g., 25 leaves from 18 species were used to validate Leaf-IT, limiting 

assessment of intraspecific variation). Ultimately, this leads to unexpected errors when ecologists 

use automated methods (e.g. Fig. 1 B left generated with Otsu’s threshold),  which erodes trust in 

the methods and may lead users to revert to manual leaf area measurements, negating efficiency 

gains. 

 

Here, we present SALMA, a semi-automated algorithm that detects leaf segmentations and extracts 

morphological features (leaf area, axes length, perimeter, solidity, eccentricity) from standard 

flatbed scanner images or photographs. SALMA learns from human-generated segmentations of as 

little as one leaf per species (few-shot learning), allowing it to identify the most relevant features 

specific to each species, rather than using a uniform approach across all species. Firstly, we aim to 
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make SALMA reliable for tiny leaves commonly found in alpine floras. Secondly, we investigate the 

relationship between leaf area and error rate to assess which fraction of the global flora can be 

reliably evaluated using existing methods. Finally, we publish the dataset used in this study, 

including human-generated segmentations for 3332 leaves in 64 species, to encourage further 

development and rigorous comparison of related algorithms. SALMA is freely available, interactive, 

requires no technical expertise, can batch-process images, incorporate manual corrections, and 

export the results to a spreadsheet. 

 

2 Methods 

Our method, SALMA (Semi-Automated Leaf Morphological Analysis), uses logistic regression inside a 

multi-dimensional colour and colour-gradient space to learn the boundary between background and 

foreground (i.e. leaf) pixels in an image (Fig. 2). For training, one or more examples of leaves and 

their binarised background/foreground segmentation need to be provided by a human. To deal with 

colour variation, training can be improved iteratively, whereby the worst segmented leaves 

(presumably those where the colour variation is most substantial) are added to the training set to 

retrain and improve the model in every step. If images are provided as photographs at varying 

lighting conditions, the background can be adjusted using an automated white-balance correction 

(see section 2.2 for an example). This is generally unnecessary when working with images generated 

on a flatbed scanner. 

After training, the model automatically processes any number of images of the same species taken 

under similar light conditions. The resulting binary segmentations are used for morphological 

measurements such as leaf area, perimeter length, eccentricity, length or width. The segmentations 
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can also be analysed outside of the SALMA pipeline to extract other morphological information of 

interest. 
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Figure 2: Schematic overview of SALMAs function. Step 1: A random leaf and a human-generated 

segmentation separating the leaf from the background is provided for training. Step 2: The SALMA model 

is trained to separate the leaf and background using the colours of the pixels and other information 

derived from them. Step 3: The SALMA model predicts all leaves in the dataset. Step 4: A human picks a 

leaf with a large error and adds it to the training set to repeat the training cycle. Step 5: If no large errors 

are present, the process is complete, and the binary leaf-background segmentations can be used to 

calculate leaf area. (While the illustration refers to single leaves, in practice, an image can contain multiple 

leaves or fragments.) 

2.1 Main Dataset 

Our dataset consisted of 3332 healthy, intact leaf scans (at 600 dpi) from 64 species native to New 

Zealand. These species’ leaves spanned 4.6 to 14202 mm2  in area, covering nearly the full global 

spectrum, from the 0.86th percentile (smallest leaves) to the 92.3rd percentile (largest leaves) 

(Díaz et al., 2022). Detailed information on species, counts, raw images and human-generated 

outlines are available at (Shabanov et al., 2025).  

2.2 Low-Contrast Dataset 

To explore how the quality of images affects SALMA’s performance, we evaluated an additional 

dataset (not included in the main dataset) of 130 leaves from four alpine species obtained during 

fieldwork (Fig. S3). This dataset was technically motivated rather than ecologically motivated, and we 

used it to quantify the effect of image quality on SALMA’s accuracy. The dataset consisted of digital 

photographs under various adverse lighting conditions (e.g., blurriness, varying contrast, blue or red 

colouration). The species spanned 31-147 mm2  in area, situating them below the 20th percentile of 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

the full global spectrum (Díaz et al., 2022). The white balance of all images was manually corrected 

by selecting a piece of background and using an ImageJ Macro (Mascalchi, 2016), restoring quality 

loss primarily due to low contrast or colour tints (Fig. S3). The training and evaluation procedures 

were otherwise the same as described above. 

2.3 Diverse Morphology and Damage Dataset 

We assembled a third dataset to validate SALMA on 212 leaves from six species containing damage 

from dessication and herbivory, compound leaves, narrow-leaved grasses and leaf fragments 

(Examples and species list in Fig. 6C and Fig. 7). Similarly to the low-contrast image dataset, the goal 

of this dataset was technical, as we aimed to explore how leaf shape and condition influenced 

segmentation accuracy. The dataset was assembled from fieldwork in New Zealand, Argentina and 

an openly available dataset of old-growth tropical forest in Borneo (Both et al., 2020). The latter 

classified scans in “easy” and “tough” depending on the difficulty of leaf area analysis. Our subset 

contained only scans in the “tough” category. The training and evaluation procedures were 

otherwise identical to those described above. 

2.4 Model Training 

Models for each species are trained by providing RGB images and corresponding binary 

segmentations separating the background and foreground (i.e. leaf area) pixels. We first translate 

the RGB image into two additional colourspaces:  HSV (Hue–Saturation–Value), separating chromatic 

content from brightness, and LAB (Lightness–a–b) representing colour in a perceptually more 

uniform way through a lightness and two chromatic channels. This leads to more robust 

segmentation. For example, LAB’s lightness channel is well-suited for distinguishing pale leaves, 
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from darker backgrounds, while RGB channels better capture the strong green saturation of tropical 

evergreens.  

 

1. SALMA uses HSV and LAB colour spaces alongside RGB to adapt to species-specific variations 

in leaf colours. The hue channel (in HSV) is excluded due to its circular structure (0° - 360°), 

which distorts distance measurements. This produces eight channels (2 from HSV, 2x3 from 

LAB and RGB). Each channel is normalised to 0-1 by dividing by the maximal value (e.g. 255 

for the red channel). (see Fig. S2 B for examples)  

2. The Laplace filter (Jain et al., 1995) is applied to each of the eight channels to detect areas 

where the value changes (i.e. colour gradients). We used the fastest Laplacian kernel (3x3), 

creating eight additional channels; see Fig. S2 B for examples. 

3. The full training set consists of 𝑁 pixels from one or more training images 𝑋 =  {𝑥𝑖 ∈ ℝ16|𝑖 =

1. . . 𝑁} and training labels 𝑌 = {𝑦𝑖 ∈ {0,1}|𝑖 = 1. . . 𝑁}. Because N can be very large (e.g. N >> 106 

for a single image) and negatively impact performance, we randomly subsample it to 𝑁′ =

1000, whereby an equal number of leaf and background pixels is included. This step 

mitigates computational overhead by limiting the training set size without impacting training 

performance (Fig. S1). When multiple images are used as inputs 𝐾 > 1, we subsample each 

image individually, increasing the training set size to 𝑁′ ⋅ 𝐾 to ensure equal contribution of 

each training image. 

4. Finally, we fit a generalised linear model (binomial family with a logit link, no random effects) 

without interaction terms. A regularisation constant parameter C was used to prevent 

overfitting. The best value for C is found by training models for the values 1, 102, 103, 104, 5 * 

104, 105, 5 * 105,106 as recommended by the employed scikit-learn Python library (Pedregosa 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

et al., 2011) through 5-fold cross-validation. The best hyperparameter values are then used 

to train the final model on the entire dataset. 

5. As the leaves in our dataset are all healthy, small holes below 10% of the detected area were 

removed after prediction. This parameter is adjustable in the interactive version and can be 

iteratively tuned to suit the dataset (Fig. 7). For example, it allows the user to assess the area 

of leaf damage by herbivory or pathogen infection. 

2.5 Comparison with existing methods 

We compared our method with three representative algorithms (Table 1), some implemented in 

software designed to make standard segmentation methods easier to use. For instance, LeafByte  

(Getman-Pickering et al., 2020), is a user-friendly mobile phone application that applies Otsu’s 

threshold method (Otsu, 1979), which determines its segmentation performance. The optimal 

threshold mimics the semi-automated ImageJ workflow (Schneider et al., 2012), in which users 

adjust threshold values to capture the leaf outline rather than tracing it manually. Unlike the other 

methods, the optimal threshold is not automated, as it requires human participation. Its 

performance, therefore, acts as an upper bound for any grayscale threshold-based method (e.g. 

USPLeaf, LeafByte, and LeafArea). 

 

Table 1: The three algorithms SALMA is compared to, the rationale behind including them and their 

working principle. 

Method Reason for Inclusion Working Principle 
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Otsu’s 

Threshold  

Widely used fully automated 

method for segmentation; 

Internally used by USPLeaf and 

LeafByte. 

Automatically determines an optimal 

global threshold by minimising intra-

class variance between leaf and 

background pixel intensities in a 

grayscale image. 

FAMeLeS  A recently published method, 

reported to outperform existing 

approaches for small leaves. 

Uses a multi-step combination of automated 

thresholding on colour channels and 

bandpass filters to segment background 

from leaf pixels. 

Optimal 

Manual 

Threshold  

Serves as an upper benchmark 

for all threshold-based methods 

(USPLeaf, LeafByte, and 

LeafArea) by simulating manual 

threshold setting and providing 

a proxy for a human using 

grayscale thresholds. 

Converts images to grayscale and finds 

the threshold that maximises the 

similarity between the resulting 

segmentation and human-generated 

masks (applying the Jaccard index). This 

simulates a human manually setting the 

threshold in software like ImageJ rather 

than being a true “model”.  

 

To determine quantitative error measures, we compared the binary segmentations produced by the 

algorithms with the human-made ones and computed: 

1. Precision: The proportion of algorithm-predicted leaf pixels correctly matching human-

labelled leaf pixels. 

2. Recall: The proportion of human-labelled positive pixels correctly identified by the algorithm. 
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3. Errors of perimeter length, area, minor and major axes of algorithm-predicted to human 

segmentations.  The errors are defined as 𝐸 = |100 −
100⋅𝑣𝑎𝑙𝑔

𝑣ℎ𝑢𝑚𝑎𝑛
| for 𝑣𝑎𝑙𝑔 and 𝑣ℎ𝑢𝑚𝑎𝑛 being the 

values determined by the algorithm or human, respectively. The error is a percentage 

starting at 0% and growing with deviation from the human assessment. Minor and major 

axes are effectively the length and width of the leaf, computed from the object's pixel 

covariance, representing its shortest and longest spans. 

 

As SALMA requires training data, while other methods are fully automated, we used the following 

training schedule: 

1. The SALMA-1 model is trained on a random leaf image for the species. (The numeral refers 

to the number of leaves used for training). 

2. SALMA-1 predicts leaf segmentations for all images of a species, and the leaf with the 

highest area error is added to the training set, which can be considered a form of boosting 

(Freund & Schapire, 1997), known to increase the learning ability of classifiers with a 

performance above random. 

3. SALMA-2 is now trained on the extended dataset containing two leaves. This simulates the 

strategy SALMA users would likely pursue, e.g., train the simplest model (using only one leaf) 

and add more training data if the model makes mistakes.  

4. Up to two more leaves are added to produce more refined models (SALMA-3 and SALMA-4). 

5. The best-performing model of the four is selected as the final SALMA model for this species. 
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2.6 Global Dataset Comparison 

We used trait data from (Díaz et al., 2022) that included mean leaf area values for 12164 species to 

assess which percentage of species globally have leaves below a specific area 𝐴, yielding a 

monotonously rising function 𝐶(𝐴) ∈ [0,100] (Fig. 4A, grey area). The relationship between the leaf 

area 𝐴 and the area error 𝑅 for each of the four methods was approximated, fitting a log-linear 

model 𝑅 = 𝛼 ⋅ 𝑙𝑜𝑔10(𝐴) + 𝛽 to our dataset's results from the 64 species. To estimate the applicability 

of each algorithm 𝑚, we combine these results to estimate what percentage of global species (based 

on their leaf area 𝐴) are expected to be assessed below a given area error 𝑅 by a specific algorithm. 

This yields a monotonously rising function 𝐷𝑚(𝑅) = 100 − 𝐶(𝐴) = 100 − 𝐶(10
𝑅− 𝛽

𝛼 ) ∈ [0,100]. For 

example, 𝐷𝑚(10%) = 45% means that the algorithm 𝑚 will classify approximately 45% of species 

globally below an area error of 10%.  

 

 

3 Results 

3.1 Method performance 

We evaluated by how much the area predicted by the methods differed from the human-delineated 

area using the area error metric (Fig. 3 A). SALMA showed superior performance for all species, with 

the worst median area error of  9.6% for the small-leaved angiosperm species (Prumnopitys taxifolia). 

In contrast, the error rates of the other algorithms were 38.1% (FAMeLeS), 29.1% (Otsu), and 23.3% 

(Optimal).  
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Across all species, SALMA needed an average of 3.2 leaves for training (Average of bars in Fig. 3 B 

top). More training images decreased the error across species from 6.5% to 2.4% and the variance of 

the error from σ=9.2% to 2.4% (Fig. 3 B bottom). Lastly, we compared the different error 

measurements across all algorithms (Fig. 3C). While recall was comparable for all algorithms, 

SALMA’s precision was greater than other algorithms  by ~0.1. The largest errors were generated by 

estimates of leaf perimeter and area. The perimeter error was higher than the area error for all 

algorithms but FAMeLeS. Minor axis errors were higher than major axis errors for all algorithms.  
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Figure 3: Performance comparison of different methods. A: Area error across species sorted by the mean. 

Only the worst 7 and best 3 species are shown for simplicity. B: Number of leaves used to train the SALMA 

models used in panel A and the average area error (± one standard deviation) of models trained with the 

same number of leaves (bottom). C: Comparison of different error metrics for the four methods. 

3.2 Leaf area and error relationship 

We assessed the relationship between a species' average leaf area and the area error generated by 

the four methods for each species (markers in Fig. 4A). For comparison, this relationship was 

approximated with a log-linear function with the goodness of fit (R2 value) between 0.45 and 0.73 

(Fig. 4A, lines), indicating a power-law relationship between area error and leaf area regardless of 

the measurement method employed. We plotted the fraction of species globally below a certain leaf 

size for 12164 species in (Díaz et al., 2022)  (Fig. 4A, shaded area, secondary y-axis). Using the global 

leaf area distribution and the log-linear area-error relationship for the different methods, we 

assessed what portion of species globally (based on their leaf area) can be assessed given a 

maximum acceptable error rate (Fig. 4 B). For example, at an acceptable area error threshold of 5%, 

SALMA is expected to produce reliable results for 97.9% of global species, while the other methods 

would produce reliable results only for 47-56% of species. To ensure reliable measurements of the 

other methods for 95% of species, the acceptable area error threshold needs to be increased to 

13%-21%.  
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Figure 4: Relationship between leaf area and area error. A: Area error for species in our dataset 

plotted against their average leaf area (log scale) for the different methods. Lines are log-linear 

fits, and goodness of fit (R² values) appear on the left. The shaded region illustrates the 

percentage of global species below a given leaf size. Steep increases in the number of species 

(right-hand side y-axis) likely reflect the logarithmic x-axis and uneven sampling of species across leaf 

area ranges. B: Estimated percentage of species globally that can be assessed below an 

acceptable area error. The estimate is generated using the log-linear approximation (lines in 

panel A) and the global distribution of leaf area (shaded region in panel A). 

3.3 Performance for low-contrast images 

To explore the impact of image quality on the performance of the algorithms, we evaluated them on 

a separate low-quality dataset captured with a mobile phone in the field (example images in Fig. S3). 

The best average area error was achieved by the “Optimal” algorithm at 5.3%, followed by SALMA 

8.1% (Fig. 5A). FAMeLeS and Otsu had very high errors of 116.7% and 32.4% due to the large number 

of leaves where the algorithm failed to identify the background correctly, leading it to categorise the 

entire image as background or leaf, and inflating the area error (Fig. 5C, top right). The number of 

training samples required for SALMA was 3 (Fig. 5B). Lastly, we compared the predicted errors for 

optimal lighting (from the log-linear model in Fig. 4A) with the measured errors for the low-contrast 

images. All algorithms, except the manual optimal threshold, showed higher area error rates: SALMA 

by 4.67%, Otsu by 21.59% and FAMeLeS by 98.24% (Fig. 5D). 
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Figure 5: Performance comparison of different methods on the low-contrast images. A: Area error across 

species. The error axis is limited to 100% for the legibility of the smaller values. B: Number of leaves used 

to train the SALMA models used in panel A and the average area error (± one standard deviation) of 

models trained on that number of leaves (bottom). C: Example leaf with human-delineated outline in pink 

and predictions made by the algorithms. The number refers to the area error. FAMeLeS has an inflated 

error, since most of the background is included in the prediction. D: Mean difference of the area error and 

expected error under optimal light conditions (see previous section). Values above 0% indicate a worse-

than-expected performance. 
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3.4 Performance for alternative leaf morphologies 

Across four species in the alternative morphologies data set that included compound, damaged and 

fragmented leaves, all algorithms achieved excellent performance at a median area error below 3% 

(Fig. 6A, left). SALMA used two to three images for training (Fig. 6B) and outperformed the other 

algorithms. Two species led to diminished performance: The low contrast images of Acaena splendes 

and the thin grass Rytidosperma setifolium,  with errors averaging 14.6% and 26%, respectively 

(Fig. 6A, right). R. setifolium was the only species where SALMA performed worse than other 

algorithms. However, the blades of R. setifolium were only a few pixels thick, and the human-

generated outlines were imprecise (Fig. 6C, orange box).  
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Figure 6: Performance comparison of different methods on the alternative morphology images. A: Area 

error across species. B: Number of leaves used to train the SALMA models used in panel A and the average 

area error (± one standard deviation) of models trained on that number of leaves (bottom). C: Examples of 

leaves in the alternate morphology dataset. Species names are given at the top in bold, and the 

distinguishing morphological feature at the bottom. For the grass (R. setifolium) a small section of the 

image (lower corner) and manual segmentation (upper corner) are depicted to visualise a possible 

ambiguity of segmenting the blade, which is only a few pixels thick. 

Discussion 
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We developed SALMA, a semi-automated method for measuring morphological leaf traits, which is 

robust to poor image quality (Fig. 5A), diverse leaf morphologies (Fig. 6A) , but requires the manual 

input of a one to four leaves per species as training examples (Fig. 3B). We show that SALMA 

outperforms existing general methods like FAMeLeS (Montès et al., 2024) and intensity threshold-

based methods (subsuming the methods USPLeaf (Meira et al., 2020), LeafByte (Getman-Pickering et 

al., 2020), LeafArea (Katabuchi, 2015)) (Fig. 3A). The performance gain is achieved through training a 

logistic regression model on one to four data samples (Fig. 3B), utilising colour and gradient 

information. The training step enables the model to identify and utilise the most relevant species-

specific features, unlike current algorithms, which apply a uniform approach across all species. 

Additionally, instead of isolating a single dimension (e.g., intensity) to differentiate the leaf from the 

background, the regression model integrates multiple characteristics simultaneously, including 

colour variation and edge morphology (Fig. S2), leading to a more accurate binarisation of the image 

than even an optimal threshold (Fig. 3A). Since SALMA requires training for each species, we 

packaged the algorithm into a stand-alone, easy-to-use graphical user software, capable of parallel 

batch processing, applicable to dissected, healthy or damaged (e.g. having holes) leaves of any 

morphology. The graphical user interface has additional features not illustrated in this manuscript 

(e.g., shape smoothing, see point 4 in Fig. 7), allows for manual corrections by the users, and exports 

results to a spreadsheet of a specifiable format, making SALMA a compelling choice for leaf area 

measurements (Fig. 7). 
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Figure 7: Screenshot of the “refinement step” in the SALMA standalone software with some features 

highlighted. The step depicted occurs after a model has been trained and applied to a single image. 1: 

Users can switch between viewing the segmented image, the scan or the detected leaves/fragments. 2: 

Erroneously detected objects can be manually excluded by clicking on them. If the scan consists of 

dissected leaf fragments, their area can later be exported as a sum. 3: SALMA uses a working folder 

structure organised by species and filenames. Filenames can contain any information, e.g., sites, IDs, 

replicates etc., that is exported into separate columns of the final CSV file. 4. Each parameter in SALMA is 

explained through tooltips. Any changes to the settings are reflected in real-time on the screen. 5. A batch 

processing mode enables the simultaneous processing of all images using parallel processing and allows 

for the interactive exploration of the results.  
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Most algorithms use thresholds on pre-processed grayscale versions of the original image to 

differentiate the background from the leaf. However, even an optimal threshold set individually for 

each image does not capture the leaf precisely and results in errors (Fig. 3A and C, example in 

Fig. 1B) that grow exponentially as leaf size decreases (Fig. 4A). This fundamental problem makes 

threshold-based methods unreliable for small-leaved plants (e.g. if only errors up to 5% are 

permitted, they are unreliable for 40% of global flora  (Fig. 4B)). Even FAMeLeS (Montès et al., 2024), 

designed with small leaves in mind, on average, performed worse than Otsu’s threshold (Fig. 3A and 

C) on our dataset. Alternatives to threshold-based methods have severe limitations: Leaf-IT 

(Schrader et al., 2017) lacks batch processing capabilities and can’t handle complex leaf shapes, and 

Easy Leaf Area (Easlon & Bloom, 2014) is limited to predominantly green leaves due to its reliance on 

the green channel. Moreover, these methods were validated on fewer than 50 images (e.g., Easy 

Leaf Area used only a single species), limiting objective assessment of their performance. 

Collectively, these limitations compromise high-throughput leaf area measurements for large 

multispecies ecological datasets. 

 

While deep learning methods show promise for solving image-based tasks, to our knowledge, no 

dedicated leaf area measurement tool exists. Popular segmentation models like YOLO (Redmon et 

al., 2015) or SAM (Kirillov et al., 2023) utilise 3 million (Yolov8n) to over 600 million (SAM) parameters, 

requiring thorough technical expertise and millions of images to fit the model. While, deep-learning 

approaches have been successfully used for plant segmentation, object recognition and counting 

(Bhagat et al., 2022), their pixel area measurement is not precise. For instance, a recent deep 

learning leaf outline model trained on relatively large Eucalyptus spp. leaves reported a precision of 

0.77 (Guo et al., 2024). While this method solved the harder task of identifying overlapping leaves in 

herbarium scans, its precision was notably lower than SALMA’s precision of >0.95 (Fig. 3C). This 
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might be due to the model architecture, which limits the inputs to a fixed size (e.g. 640x640 pixels 

for Yolo), requiring scaling or tiling images to work with large leaf scans (e.g. ~5000x7000 pixels for a 

scan at 600dpi), which possibly limits the precision gain from high-resolution scans. By contrast, 

SALMA is minimal, utilising only 17 parameters, which can be fitted on 1-4 leaves in seconds on a 

standard laptop without any technical expertise. Because single pixels are used as inputs, it applies 

to images of any size. Owing to their generic nature, current deep-learning models provide 

advantages in segmentation, object recognition and counting, but are not precise for area 

measurements.  

 

Large datasets, assembled by automated measurements, have the potential to unlock 

fundamentally new insights, even if their precision is lower. For example, (Guo et al., 2024), gathered 

136,599 leaf area measurements (from 38,867 herbarium sheets) of the Eucalyptus genus, which, 

despite the lower reported precision (0.77), enabled them to discover a link between leaf area and 

precipitation at the sub-genus but not species level, demonstrating the potential of large-scale trait 

measurements, aided by automation. In contrast, the average number of datasets containing leaf 

area measurements in the globally largest trait database (TRY) is 9.98 (Díaz et al., 2022), indicating 

only a handful of different sampling locations. The need for larger datasets also stems from 

phenotypic plasticity,  variation in traits within a species in response to biotic and abiotic factors, 

which plays an important role in plant growth (da Silveira Pontes et al., 2010) and community 

assembly (Lepš et al., 2011). Larger sample sizes across environmental gradients and genotypes can 

significantly increase the statistical power of conducted studies (Gianoli & Valladares, 2012). This 

problem is exacerbated for alpine species where phenotypic plasticity can influence elevational 

distribution (Rixen et al., 2022). Because intraspecific trait variation is generally lower than variation 

among species (Albert et al., 2011), detecting it in small alpine plants requires highly precise 
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measurements. Automated and accurate leaf area measurements, therefore, have the potential to 

advance our understanding of trait-environment relationships. 

 

SALMA's main limitation is the need for one or more human-generated examples for training. 

However, we found that the average error, even with only one example leaf, is very low (ca. 4%, 

Fig. 3B) and decreases insignificantly with more examples. This will likely depend on the species, 

with more complex leaves (e.g. ones with strong colour variation) requiring more examples. After 

training, models can be shared and reused, with additional examples added as needed to reduce 

the data requirements for future model training. SALMA’s precision is worse than recall, which 

indicates that it errs on the side of overestimating leaf area through the inclusion of shadows 

(Fig. 3C).  However, this effect is much less pronounced than for existing methods. Exploring species-

invariant models, the impact of post- and pre-processing of images and adding further channels to 

improve performance will be part of future research.  

 

Under suboptimal lighting conditions, SALMA demonstrated high resilience, achieving a mean area 

error of 8.1%—only slightly above the optimal threshold method (5.3%) but substantially 

outperforming Otsu (32.4%) and FAMeLeS (116.7%) (Fig. 5A). FAMeLeS’ high area error results from 

erroneously identifying the background as leaf (Fig. 5B), leading to an error proportional to the ratio 

of leaf to background. Alternative error metrics do not rank the algorithms differently (Fig. S4). The 

adverse light conditions increased SALMA’s area error by 4.67% (Fig. 5D), making it perform worse 

than the manual optimal threshold setting. This indicates that under optimal light conditions, colour 

and gradient information, exploited by SALMA, contain more information than the grayscale 

intensity used by other methods, leading to a better performance and indicating that an intensity 
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threshold is insufficient for accurate leaf segmentation. Poor lighting and contrast, affecting the 

colour and gradient information respectively, erode this additional information, making SALMA 

perform slightly worse than a human optimally setting the threshold. However, while the error 

increases, SALMA’s segmentation is automated, and in cases where human involvement is infeasible 

due to the size of the dataset, it remains a viable choice. 

 

Diverse leaf morphologies and leaf damage had an insubstantial effect on SALMA’s performance 

and data requirements (Fig. 6A left and B). However, low scanning resolution (e.g. for R. setifolium, 

Fig. 6C) strongly increased the area error to 32%. This is likely caused by the thickness of the 

scanned grass blades being only 4 pixels thick, making a precise and consistent human 

segmentation difficult and resulting in training the model on ambiguous data (Fig. 6C orange box). In 

other words, if a pixel can’t be uniquely (and consistently) identified as background or leaf, due to 

the combination of morphology and resolution, performance will worsen. However, SALMA is 

fundamentally invariant to leaf morphology, provided all data have the same resolution, because it 

is pixel-based. Using flatbed scanners with a minimum resolution of 400 dpi will improve 

performance, preventing errors caused by low contrast, insufficient resolution or a higher shadow-

to-leaf-area ratio of morphologically complex leaves. 

 

SALMA is a fundamentally novel approach for ecologists interested in precise, automated leaf area 

measurement in the context of plant functional traits or herbivory. We validated SALMA’s superior 

performance and broad applicability on three diverse datasets, including temperate to tropical 

leaves of global flora, including woody and grassy species of various morphologies, damage levels 
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and under poor lighting conditions. This increase in accuracy has the potential to enhance our ability 

to identify novel trait-environment relationships and elucidate the ecological role of phenotypic 

plasticity. Importantly, we demonstrated that measurement errors decrease exponentially with leaf 

size, making the increased precision necessary when working with small-leaved plants (e.g., alpine 

regions). The method is provided as easy-to-use browser-based software, accompanied by video 

tutorials at https://github.com/lnilya/salma. Our dataset can serve as a benchmark for future 

software development and is available at (Shabanov et al., 2025). 

 

Data Availability & Code 

The full code, build pipeline, walkthrough video, and documentation for SALMA are available at 

https://github.com/lnilya/salma. This repository also contains executables that can be downloaded 

and used without any technical knowledge. All three datasets, their original flatbed scanner 

images/photographs and the segmentations resulting from the presented algorithms and used here 

are publicly available (Shabanov et al., 2025). 
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Highlights 

● Introducing SALMA: A machine learning tool for precise leaf morphology measurements. 

● Features a graphical user interface for users without technical expertise 

● Achieved 2-15x lower leaf area errors than existing grayscale algorithms. 

● Leverages few-shot learning (1-4 examples) and multi-color/gradient analysis. 

● Identifies a power-law relationship between leaf area and measurement error. 


