@inproceedings{maddigan2024reidentification,author={Maddigan, Paula and Ehrhardt, Oskar and Lensen, Andrew and Shaw, {Rachael C.}},title={Re-Identification of Individual Kākā: An Explainable {DINO}-Based Model},booktitle={Proceedings of the International Conference on Image and Vision Computing New Zealand (IVCNZ)},year={2024},month=dec,day={4},publisher={{IEEE}},pages={1--6},}
Interpretable Local Explanations Through Genetic Programming
@inproceedings{andersen2024interpretable,author={Andersen, Hayden and Lensen, Andrew and Browne, {Will N.} and Mei, Yi},title={Interpretable Local Explanations Through Genetic Programming},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion},year={2024},month=jul,day={14},publisher={{ACM}},doi={10.1145/3638530.3654370},pages={247--250},}
Genetic Programming Trees for Explainable Manifold Learning
@article{cravens2024genetic,author={Cravens, Ben and Lensen, Andrew and Maddigan, Paula and Xue, Bing},title={Genetic Programming Trees for Explainable Manifold Learning},year={2024},doi={10.48550/arXiv.2403.14139},eprinttype={arXiv},eprint={2403.14139},journal={arXiv},month=mar,day={22},}
Explaining Genetic Programming Trees using Large Language Models
@article{maddigan2024explaining,author={Maddigan, Paula and Lensen, Andrew and Xue, Bing},title={Explaining Genetic Programming Trees using Large Language Models},year={2024},doi={10.48550/arXiv.2403.03397},eprinttype={arXiv},eprint={2403.03397},journal={arXiv},month=mar,day={6},}
2023
Explainable Artificial Intelligence by Genetic Programming: A Survey
@article{mei2022explainable,author={Mei, Yi and Chen, Qi and Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Explainable Artificial Intelligence by Genetic Programming: A Survey},journal={{IEEE} Transactions on Evolutionary Computation},pages={621--641},year={2023},volume={27},number={3},month=nov,day={25},publisher={IEEE},doi={10.1109/TEVC.2022.3225509},}
Explainable AI–building trust through understanding
Matt Lythe, Gabriella Mazorra Cos, Maria Mingallon, Andrew Lensen, Christopher Galloway, David Knox, Sarah Auvaa, and Kaushalya Kumarasinghe
@article{lythe2023explainable,title={Explainable AI--building trust through understanding},author={Lythe, Matt and de Cos, Gabriella Mazorra and Mingallon, Maria and Lensen, Andrew and Galloway, Christopher and Knox, David and Auvaa, Sarah and Kumarasinghe, Kaushalya},year={2023},month=nov,publisher={AI Forum New Zealand},}
Producing Diverse Rashomon Sets of Counterfactual Explanations with Niching Particle Swarm Optimisation
@inproceedings{andersen2023producing,author={Andersen, Hayden and Lensen, Andrew and Browne, {Will N.} and Mei, Yi},title={Producing Diverse Rashomon Sets of Counterfactual Explanations with Niching Particle Swarm Optimisation},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)},year={2023},month=jul,day={15},publisher={{ACM}},pages={393--401},doi={10.1145/3583131.3590444}}
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Peng Zeng, Xiaotian Song, Andrew Lensen, Yuwei Ou, Yanan Sun, Mengjie Zhang, and Jiancheng Lv
@article{zeng2023differentiable,author={Zeng, Peng and Song, Xiaotian and Lensen, Andrew and Ou, Yuwei and Sun, Yanan and Zhang, Mengjie and Lv, Jiancheng},title={Differentiable Genetic Programming for High-dimensional Symbolic Regression},year={2023},doi={10.48550/arXiv.2304.08915},eprinttype={arXiv},eprint={2304.08915},journal={arXiv},month=apr,day={18},}
A Genetic Programming Encoder for Increasing Autoencoder Interpretability
@inproceedings{schofield2023genetic,author={Schofield, Finn and Slyfield, Luis and Lensen, Andrew},title={A Genetic Programming Encoder for Increasing Autoencoder Interpretability},booktitle={Proceedings of the European Conference on Genetic Programming (EuroGP)},year={2023},month=apr,day={12},volume={13986},series={Lecture Notes in Computer Science},publisher={Springer},pages={19--35},doi={10.1007/978-3-031-29573-7_2}}
Feature-based Image Matching for Identifying Individual Kākā
@article{osullivan2023feature,author={O'Sullivan, Fintan and Escott, Kirita{-}Rose and Shaw, {Rachael C.} and Lensen, Andrew},title={Feature-based Image Matching for Identifying Individual Kākā},year={2023},doi={10.48550/arXiv.2301.06678},eprinttype={arXiv},eprint={2301.06678},journal={arXiv},month=jan,day={17},}
2022
Using Neural Networks to Automate Monitoring of Fish Stocks
@inproceedings{stanley2022using,author={Stanley, Michael and Lensen, Andrew and Zhang, Mengjie},title={Using Neural Networks to Automate Monitoring of Fish Stocks
},booktitle={Proceedings of the Symposium Series on Computational Intelligence (SSCI)},year={2022},month=dec,day={4},pages={1--6},publisher={{IEEE}},doi={10.1109/SSCI51031.2022.10022081}}
Speeding up Genetic Programming Based Symbolic Regression Using GPUs
@inproceedings{zhang2022speeding,author={Zhang, Rui and Lensen, Andrew and Sun, Yanan},title={Speeding up Genetic Programming Based Symbolic Regression Using GPUs},booktitle={Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI)},year={2022},month=nov,day={10},pages={1--14},publisher={{IEEE}},doi={10.1007/978-3-031-20862-1_38}}
Genetic Programming for Manifold Learning: Preserving Local Topology
@article{lensen2021genetic,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Genetic Programming for Manifold Learning: Preserving Local Topology},journal={{IEEE} Transactions on Evolutionary Computation},pages={661--675},year={2022},month=aug,day={23},volume={26},number={4},publisher={IEEE},doi={10.1109/TEVC.2021.3106672}}
Explainable Artificial Intelligence for Assault Sentence Prediction in New Zealand
@article{rodger2022explainable,author={Rodger, Harry and Lensen, Andrew and Betkier, Marcin},title={Explainable Artificial Intelligence for Assault Sentence Prediction in New Zealand},journal={Journal of the Royal Society of New Zealand},year={2022},month=aug,pages={1--15},day={15},publisher={Taylor & Francis},doi={10.1080/03036758.2022.2114506},}
Improving the Search of Learning Classifier Systems Through Interpretable Feature Clustering
@inproceedings{andersen2022improving,author={Andersen, Hayden and Lensen, Andrew and Browne, {Will N.}},title={Improving the Search of Learning Classifier Systems Through Interpretable Feature Clustering},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion},year={2022},month=jul,day={9},pages={1752--1756},publisher={{ACM}},doi={10.1145/3520304.3534027}}
Evolving Counterfactual Explanations with Particle Swarm Optimization and Differential Evolution
@inproceedings{andersen2022evolving,author={Andersen, Hayden and Lensen, Andrew and Browne, {Will N.} and Mei, Yi},title={Evolving Counterfactual Explanations with Particle Swarm Optimization and Differential Evolution},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2022},month=jul,day={18},pages={1--8},publisher={{IEEE}},doi={10.1109/CEC55065.2022.9870283}}
Large Scale Image Classification Using GPU-based Genetic Programming
@inproceedings{zeng2022large,author={Zeng, Peng and Lensen, Andrew and Sun, Yanan},title={Large Scale Image Classification Using {GPU}-based Genetic Programming},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion},year={2022},month=jul,day={9},pages={619--622},publisher={{ACM}},doi={10.1145/3520304.3528892}}
2021
Genetic Programming for Evolving a Front of Interpretable Models for Data Visualisation
@article{lensen2020genetic,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Genetic Programming for Evolving a Front of Interpretable Models for Data Visualisation},journal={{IEEE} Transactions on Cybernetics},pages={5468--5482},year={2021},month=nov,day={9},volume={51},number={11},publisher={IEEE},doi={10.1109/TCYB.2020.2970198}}
Genetic Programming for Evolving Similarity Functions Tailored to Clustering Algorithms
@inproceedings{andersen2021genetic,author={Andersen, Hayden and Lensen, Andrew and Xue, Bing},title={Genetic Programming for Evolving Similarity Functions Tailored to Clustering Algorithms},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2021},month=jun,day={28},publisher={{IEEE}},pages={688--695},doi={10.1109/CEC45853.2021.9504855}}
Using Genetic Programming to Find Functional Mappings for UMAP Embeddings
@inproceedings{schofield2021using,author={Schofield, Finn and Lensen, Andrew},title={Using Genetic Programming to Find Functional Mappings for UMAP Embeddings},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2021},month=jun,day={28},publisher={{IEEE}},pages={704--711},doi={10.1109/CEC45853.2021.9504848}}
Mining Feature Relationships in Data
Andrew Lensen
In Proceedings of the European Conference on Genetic Programming (EuroGP), Apr 2021
@inproceedings{lensen2021mining,author={Lensen, Andrew},title={Mining Feature Relationships in Data},booktitle={Proceedings of the European Conference on Genetic Programming (EuroGP)},year={2021},month=apr,day={7},volume={12691},series={Lecture Notes in Computer Science},publisher={Springer},pages={247--262},doi={10.1007/978-3-030-72812-0_16}}
2020
Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis
@article{lensen2019genetic,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis},journal={Evolutionary Computation},volume={28},number={4},pages={531--561},year={2020},month=dec,day={1},publisher={MIT Press},doi={10.1162/evco_a_00264}}
Evolving Simpler Constructed Features for Clustering Problems with Genetic Programming
@inproceedings{schofield2020evolving,author={Schofield, Finn and Lensen, Andrew},title={Evolving Simpler Constructed Features for Clustering Problems with Genetic Programming},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2020},month=jul,day={19},publisher={{IEEE}},pages={1--8},doi={10.1109/CEC48606.2020.9185575}}
Multi-Objective Genetic Programming for Manifold Learning: Balancing Quality and Dimensionality
@article{lensen2019multi,author={Lensen, Andrew and Zhang, Mengjie and Xue, Bing},title={Multi-Objective Genetic Programming for Manifold Learning: Balancing Quality and Dimensionality},journal={Genetic Programming and Evolvable Machines},volume={21},number={3},pages={399--431},year={2020},month=feb,day={5},publisher={Springer},doi={10.1007/s10710-020-09375-4}}
2019
Evolutionary Feature Manipulation in Unsupervised Learning
@phdthesis{lensen2019thesis,author={Lensen, Andrew},title={Evolutionary Feature Manipulation in Unsupervised Learning},year={2019},month=sep,pages={268},institution={Te Herenga Waka---Victoria University of Wellington},doi={10.26686/wgtn.17142221.v1}}
@article{alsahaf2019survey,author={Al-Sahaf, Harith and Bi, Ying and Chen, Qi and Lensen, Andrew and Mei, Yi and Sun, Yanan and Tran, Binh and Xue, Bing and Zhang, Mengjie},title={A survey on evolutionary machine learning},journal={Journal of the Royal Society of New Zealand},volume={49},number={2},pages={205-228},year={2019},month=apr,day={15},publisher={Taylor & Francis},doi={10.1080/03036758.2019.1609052}}
@inproceedings{lensen2019can,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Can Genetic Programming Do Manifold Learning Too?},booktitle={Proceedings of the European Conference on Genetic Programming (EuroGP)},year={2019},month=apr,day={24},volume={11451},series={Lecture Notes in Computer Science},publisher={Springer},pages={114--130},note={Best paper},doi={10.1007/978-3-030-16670-0_8}}
2018
Particle Swarm Optimisation for Feature Selection and Weighting in High-Dimensional Clustering
@inproceedings{oneill2018particle,author={O'Neill, Damien and Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Particle Swarm Optimisation for Feature Selection and Weighting in High-Dimensional Clustering},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2018},month=jul,day={8},publisher={{IEEE}},pages={1--8},doi={10.1109/CEC.2018.8477974}}
Automatically Evolving Difficult Benchmark Feature Selection Datasets with Genetic Programming
@inproceedings{lensen2018automatically,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Automatically Evolving Difficult Benchmark Feature Selection Datasets with Genetic Programming},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)},pages={458--465},year={2018},month=jul,day={15},publisher={{ACM}},doi={10.1145/3205455.3205552}}
Generating Redundant Features with Unsupervised Multi-tree Genetic
Programming
@inproceedings{lensen2018generating,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Generating Redundant Features with Unsupervised Multi-tree Genetic
Programming},booktitle={Proceedings of the European Conference on Genetic Programming (EuroGP)},pages={84--100},year={2018},month=apr,day={4},series={Lecture Notes in Computer Science},volume={10781},publisher={Springer},doi={10.1007/978-3-319-77553-1_6},}
2017
New Representations in Genetic Programming for Feature Construction in k-Means Clustering
@inproceedings{lensen2017New,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={New Representations in Genetic Programming for Feature Construction in k-Means Clustering},booktitle={Proceedings of the 11th International Conference on Simulated Evolution and Learning ({SEAL})},year={2017},month=nov,day={10},volume={10593},series={Lecture Notes in Computer Science},pages={543--555},publisher={Springer},doi={10.1007/978-3-319-68759-9_44},}
GPGC: genetic programming for automatic clustering using a flexible non-hyper-spherical graph-based approach
@inproceedings{lensen2017GPGC,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={{GPGC:} genetic programming for automatic clustering using a flexible non-hyper-spherical graph-based approach},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)},year={2017},month=jul,day={15},pages={449--456},publisher={{ACM}},doi={10.1145/3071178.3071222},}
Using Particle Swarm Optimisation and the Silhouette Metric to Estimate the Number of Clusters, Select Features, and Perform Clustering
@inproceedings{lensen2017Using,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Using Particle Swarm Optimisation and the Silhouette Metric to Estimate the Number of Clusters, Select Features, and Perform Clustering},booktitle={Proceedings of the European Conference on the Applications of Evolutionary Computation (EvoApplications), Part {I}},year={2017},month=apr,day={19},volume={10199},series={Lecture Notes in Computer Science},pages={538--554},publisher={Springer},doi={10.1007/978-3-319-55849-3_35},}
Improving k-means clustering with genetic programming for feature construction
@inproceedings{lensen2017Improving,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Improving {k}-means clustering with genetic programming for feature construction},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion},year={2017},month=apr,day={19},pages={237--238},publisher={{ACM}},doi={10.1145/3067695.3075962},}
2016
Particle Swarm Optimisation Representations for Simultaneous Clustering and Feature Selection
@inproceedings{lensen2016Particle,author={Lensen, Andrew and Xue, Bing and Zhang, Mengjie},title={Particle Swarm Optimisation Representations for Simultaneous Clustering and Feature Selection},booktitle={Proceedings of the Symposium Series on Computational Intelligence (SSCI)},year={2016},month=dec,day={6},pages={1--8},publisher={{IEEE}},doi={10.1109/SSCI.2016.7850124},}
Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data
@inproceedings{lensen2016Genetic,author={Lensen, Andrew and Al{-}Sahaf, Harith and Zhang, Mengjie and Xue, Bing},title={Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data},booktitle={Proceedings of the European Conference on Genetic Programming (EuroGP)},year={2016},month=mar,day={30},volume={9594},series={Lecture Notes in Computer Science},pages={51--67},publisher={Springer},doi={10.1007/978-3-319-30668-1_4},}
2015
A hybrid Genetic Programming approach to feature detection and image classification
@inproceedings{lensen2015hybrid,author={Lensen, Andrew and Al{-}Sahaf, Harith and Zhang, Mengjie and Xue, Bing},title={A hybrid Genetic Programming approach to feature detection and image classification},booktitle={Proceedings of the International Conference on Image and Vision Computing New Zealand (IVCNZ)},year={2015},month=nov,day={23},pages={1--6},publisher={{IEEE}},doi={10.1109/IVCNZ.2015.7761564},}
Genetic Programming for algae detection in river images
@inproceedings{lensen2015Genetic,author={Lensen, Andrew and Al{-}Sahaf, Harith and Zhang, Mengjie and Verma, Brijesh},title={Genetic Programming for algae detection in river images},booktitle={Proceedings of the {IEEE} Congress on Evolutionary Computation (CEC)},year={2015},month=may,day={25},pages={2468--2475},publisher={{IEEE}},doi={10.1109/CEC.2015.7257191},}